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Abstract

Digital signal processing (DSP) has become a popular method for handling not
only signal processing, but communications, and control system applications. A DSP
application of interest to the Air Force is high-speed avionics processing. The real-time
computing requirements of avionics processing exceed the capabilities of current single-
chip DSP processors, and parallelization of multiple DSP processors is a solution to
handle such requirements. Designing and implementing a parallel DSP algorithm has
been a lengthy process often requiring different design tools and extensive programming
experience. Through the use of integrated software development tools, rapid prototyping
becomes possible by simulating algorithms, generating code for workstations or DSP
microprocessors, and generating hardware description language code for hardware
synthesis. This research examines the use of one such tool, the Signal Processing
WorkSystem (SPW) by the Alta Group of Cadence Design Systems, Inc., and how SPW
supports the rapid prototyping process from an avionics algorithm design through
simulation and hardware implementation. Throughout this process, SPW is evaluated as
an aid to the avionics designer to meet design objectives and evaluate trade-offs to find
the best blend of efficiency and effectiveness. By designing a two-dimensional fast
Fourier transform algorithm as a specific avionics algorithm and exploring

implementation options, SPW is shown to be a viable rapid prototyping solution allowing




an avionics designer to focus on design trade-offs instead of implementation details while

using parallelization to meet real-time application requirements.
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EVALUATION OF DESIGN TOOLS FOR RAPID PROTOTYPING OF PARALLEL

SIGNAL PROCESSING ALGORITHMS

l. Introduction

Digital signal processing (DSP) processors are in wide use in communications,
signal processing, and control system applications. These high-speed, single-chip
microcomputers are specifically designed for handling computationally intensive tasks in
lieu of using conventional microprocessors [1:482]. A DSP application of interest to the
Air Force is high-speed avionics. As computing demands of existing and emerging DSP
applications continue to increase, the current single-chip DSP processor technology can
no longer keep pace. While parallelization of multiple DSP processors is a solution to
increase throughput and speed beyond the capabilities of a single processor for the
demanding requirements of avionics signal processing, designing and implementing
parallel DSP processor systems can be a lengthy process. Rapid prototyping of parallel
architectures is possible through the use of software tools such as the Signal Processing
WorkSystem (SPW) [2]. The purpose of this thesis effort is to evaluate the rapid
prototyping process to design and implement paralle]l DSP algorithms using SPW and

SPW’s applicability for high-speed avionics applications.




Background

Real-world DSP is the filtering of signals in real-time [1:3]. Analog to digital
conversion' takes place either on-chip or off-chip after which manipulation of the digital
signal simplifies to computational operations. The digitized results can then be converted
back to analog signals via digital to analog converters. To process real-time data, both
the converters and the DSP processors must possess the speed and throughput necessary
for continuous processing. However, computing requirements are surpassing the
capabilities of single-chip DSP processors. For example, algorithms that integrate speech
coding/decoding into a multi-media environment require 1-30 million instructions per
second (MIPS) which is well within the 30-50 MIPS capability of today’s computer
workstation [3:269]. Emerging applications, such as video coding/decoding and medical
imaging algorithms, require 0.1-10 billion instructions per second [3:269]. Current DSP
processors are not capable of handling these requirements. Thus, parallel architectures
such as those used for shipboard radar systems may contain as many as 1000 processors
to handle the tremendous processing and throughput requirements [4]. Design of such
systems can now take advantage of emerging DSP development tools to exploit the

capabilities of a DSP processor in parallel architectures.

Of the DSP development tools available today, AFIT and Wright Laboratory
(WL) have access to Signal Processing WorkSystem (SPW). SPW is an integrated
software environment for developing, simulating, and implementing DSP systems. SPW

consists of a number of components to accomplish these tasks as designed and

! Analog to digital conversion is converting an analog input consisting of a voltage or current to digital output binary
word.




implemented by the Alta Group of Cadence Design Systems [2]. Figure 1 illustrates

these components.
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Figure 1 - SPW Components {2:iii]

DSP systems are interactively designed using blocks from the SPW libraries or blocks

created using the Filter Design System (FDS) or Finite State Machine (FSM) Editor.

System block diagrams are designed in the Block Diagram Editor (BDE) with

Interconnections to represent data flow. Simulation is performed through the Signal Flow

Simulator with signal analysis using the Signal Calculator. The Code Generation System

(CGS) option of SPW adds the capability to automatically generate C code for execution

on workstations or DSP processors [2]. The addition of the MultiProx (MPX) option

gives SPW the capability to partition a design among multiple processors for




multiprocessing simulations or downloading to a development board containing multiple

processors [2].
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Figure 2 - SPW MultiProx [2]

Another component of SPW, the Hardware Design System (HDS), generates VHDL?
descriptions with when used with VLSI synthesis tools, can result in a layout for
fabrication of an application specific integrated circuit (ASIC) [2,5]. The combination of
the tools available within the SPW environment supports rapid prototyping as well as

paralle] implementations for signal processing.

2 VHDL is the VHSIC Hardware Description Language where VHSIC is Very High Speed Integrated Circuit. VHDL
is a standard language for the specification of hardware behavior and structure for very-large scale integration design

[5].




Problem Statement

Real-time processing of data is a requirement for avionics signal processing
applications. However, the speed and throughput requirements for real-time signal
processing currently exceed the capabilities of single-chip DSP processor
implementations. Moreover, the current development time from DSP algorithm selection
to design simulation to testable hardware implementation often prohibits efforts to make

design changes and evaluate trade-offs.

The objective of this thesis investigation is to evaluate the rapid prototyping
process from algorithm selection through design, simulation, and hardware test of parallel
DSP architectures for avionics signal processing using the SPW environment. This is
accomplished by first choosing a general algorithm representative of those used in high-
speed avionics applications. The algorithm is then designed at a high-level using
functional blocks and interconnections using the SPW environment for simulation and
analysis. Simulation and analysis of the simulation results are performed to determine
whether or not the algorithm functions and performs as required based upon accep“ance
criteria. With the use of the code generation capabilities of SPW, porting to a
workstation and a development board (Texas Instruments) for hardware/software testing
is investigated. Finally the capability of the HDS component of SPW to generate VHDL
is evaluated. Throughout the rapid prototyping process, the SPW environment is
evaluated for ease of learning, ease of use, and functionality and to what extent SPW

allows a designer to evaluate design and implementation trade-offs.




Rationale

Why is it important that signal processing system designers take advantages of
emerging software development tools? The primary reason is the time savings involved
in rapid prototyping. Instead of spending time writing code® which is in most cases an
exercise of translating the functions of an abstract system design, a designer can spend
more time analyzing the design by making trade-offs in cost and performance to improve
efficiency and effectiveness [6]. Through rapid prototyping, the process of design,
simulation, and hardware test can be completed efficiently so that more time may be
spent refining the algorithm and addressing design issues such as numeric formats and
sampling rates rather than being bogged down with low-level implementation details. If
necessary, extra performance may be gained by fine tuning the automatically generated
code by hand once the design of the algorithm has been decided. Another benefit of rapid
prototyping is the ability to test a system in real time on actual hardware which not only
speeds up the testing process, but also reflects a better representation of the final product.
The time savings achieved through rapid-prototyping allows a designer to spend more
time examining and evaluating design trade-offs. These design trade-offs include parallel
partitioning strategies and data handling strategies to include input, output, and storage.
Other design issues include power consumption, in-circuit testing capability, and
redundancy. Rapid prototyping time savings provides more time to be spent examining

these design issues.

# Code or more appropriately, source code is the form in which a computer program is written by the designer in a
formal programming language which is subsequently compiled automatically into a machine-recognizable code [6]




Scope

This research focuses on the capability of SPW to design, simulate, and
implement a parallel system of DSP processors using a rapid prototyping methodology.
Synthesis is attempted on unmodified VHDL code or portions of the VHDL code which
are synthesizable. A selected avionics algorithm is used throughout the process. Design

trade-offs of this algorithm are evaluated through the use of parallel processing metrics

[7].

Standards

Evaluating computing performance is critical to analyzing different architectural
approaches. Performance metrics include run time, speedup, efficiency (time and space),
cost and the isoefficiency metric of scalability [7:117-141]. Each of these metrics is

defined in Kumar’s Introduction to Parallel Computing [7].

Methodology

The following subsections identify and describe the tasks that comprise this

research effort:

Literature Review

The literature review, Chapter II, is a continuing process to examine the areas of
high-speed avionics signal processing, parallel DSP architectures, and DSP software
development tools. The goal of a literature review of high-speed avionics signal

processing is an understanding of the classification of avionics applications and the




requisite computing requirements for a particular classification. The literature review of
current efforts to parallelize DSP applications enables selection of an architecture to
support a particular avionics signal processing applications. A survey of DSP software
development tools serves both to identify the most promising environments in use today
for rapid prototyping and to allow comparisons with the SPW environment. In an effort
to locate information in these areas, the World Wide Web (WWW) and associated WWW
search engines are used extensively. The growth of the DSP industry has been
accompanied by a proliferation of sites on the internet relating signal processing. Finally,
factors to consider while evaluating DSP software development tools such as SPW are

described.

Algorithm Selection and Design

In order to demonstrate the process of taking an algorithm through the rapid
prototyping process, an algorithm representative of those used in high-speed avionics
signal processing is chosen. In addition to avionics signal processing applicability,
selection is based upon algorithm complexity so design and test may be completed within
the time allotted for this research. Chapter III, Algorithm Selection and Design, provides
background on the chosen algorithm, the two-dimensional fast Fourier transform, and
describes the design and simulation of the algorithm in SPW. SPW is evaluated for
whether or not it provides adequate functionality to allow a designer to make design

trade-offs while providing a proper interface.




Design Implementation

Chapter 4, Design Implementation, investigates the three different implementation
options available in SPW. From the block diagram design of the algorithm, C code can
be generated for execution on workstation. Also, C code may be generated for porting to
DSP processors for testing on development boards. The potential of Wright Laboratory’s
(WL) Texas Instruments Quad C40 DSP320 Development Board is assessed. Finally,
hardware synthesis support exists through VHDL code generation. Each of these options

is analyzed with appropriate metrics applied.

Materials and Equipment

The following materials and equipment are required:

Sun Workstation (AFIT VLSI Laboratory)
e Signal Processing WorkSystem (SPW) Version 3.0 (AFIT)

e SPW Hardware Design System (HDS) option

e SPW Code Generation System (CGS) MultiProx option
e Synopsys VHDL Tools

e Texas Instruments Quad C40 DSP320 Development Board/PC-OS/2 (WL Avionics
Laboratory)

Summary

To evaluate the utility of the Signal Processing WorkSystem, an algorithm
representative of high-speed avionics applications is implemented using a rapid
prototyping methodology. With the parallel processing support, code generation, and
hardware synthesis support of SPW, significant time may be saved in the development
process while at the same time, an algorithm can be parallelized to improve upon the

capabilities of a single-chip DSP processor.




This chapter describes the problem and describes the potential advantages of using
software development tools for rapid prototyping. The reader is assumed to have a basic
understanding of computer science and electrical engineering concepts. Chapter IT
discusses the areas of high-speed avionics signal processing, DSP in general,
parallel/distributed DSP design, rapid prototyping through DSP software development
tools and software evaluation principles. Chapter I1I describes the algorithm selection
and its design in SPW. Chapter IV covers implementation of the design to include C
code generation, and HDL generation for hardware synthesis. Finally, Chapter V draws
conclusions and presents recommendations on the use of SPW to support a rapid

prototyping methodology for high-speed avionics applications.




ll. Literature Review

This chapter provides background information on examples of high-speed
avionics signal processing and computational requirements, along with engineering to
meet these requirements. This is followed by a discussion of DSP processors. Then, an
explanation of how parallelism may be used along with descriptions of several current
parallel DSP designs is provided. The rapid prototyping methodology is explained and
emergence of software development tools which support this methodology is examined.
Finally, factors to consider while evaluating hardware/software development platforms

are described.

High-Speed Avionics Signal Processing

DSP applications may be classified based upon relative algorithm complexity,
required sample rates, clock rates, and numeric formats [8]. Algorithms specify the
arithmetic operations but not how the operations are to be implemented at lower levels of
detail. Implementation details, for example, include the sample rate or the rate at which
samples are consumed, processed, or produced [8]. The ratio of clock rate to sample rate
partially determines the hardware required to implement an algorithm with a given
complexity [8]. Numeric formats are also a design issue to evaluate the trade-offs
between algorithm simplicity and numerical accuracy. The following graph shows the
range of the signal processing applications when considering relative algorithm

complexity and sample rates:

11




10G F

e Radio Signaling and Radar

1ooM 4 High Definition Television
10M ;-

i +
100k

Yideo

Radio Modems

Audi
Sample Hate udio _
(Hz) 1ok Speech  Woiceband Modemns

1k 4
o0 4 Caontrol Seismic Modeling

10 4
1 Instrumentation

110 4

1A00 4
11000 1 Weather Modeling

>

Less Complex More Complex

Financial Modeling

Algorithm Gomplexity

Figure 3 - Relative Sampling Rates and Algorithm Complexities of Signal Processing Applications [8]

High-speed avionics signal processing typically falls in the area of high sample rates with

less complex algorithms.

Military avionics signal processing applications include secure communications,
sonar processing, image processing, navigation, missile guidance, and radar/sensor
processing [1:474]. A DSP application of vital interest to the Air Force in the area of
radar/sensor processing is accurate, real-time target recognition through the use of radar
cross-section (RCS) images. Xpatch [9] is currently used for this purpose, but the real-
time computing requirements far exceed the capabilities today. Xpatchf, the frequency

domain program of Xpatch, requires 35 minutes on an Intel 1860 computer to calculate the
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RCS image of an F-15 aircraft from a single perspective, and a complete image requires
16,800 hours or 700 days of computer time [10:1-2]. While the ultimate goal of real-time
RCS prediction some time away, parallelization can offer significant speed-ups in the

near term.

The first AFIT research on parallelizing electromagnetic prediction code was
conducted by Captain Scott Suhr [11], who demonstrated the speedup possibilities by
parallelizing a previously designed serial code. A precursor to Xpatch, NECBSC, was
modified for execution on an Intel iPSC Hypercube. The results were a speedup of 3.59
on an eight node Intel iPSC/2 over the serial benchmark on the same machine. Speedup
on an Intel iPSC/860 was 2.51 due to a faster benchmark, but overall time was reduced by
23 percent [11:xi]. Research continued by Lieutenant Paul Work to parallelize serial ray-
tracing code considered factors such as load balancing and decomposition [12:xi], which
demonstrated the speedup possibilities using parallel processing with electromagnctic

code.

Later research conducted by Captain B. A. Kadrovach focused on the Xparch
algorithms by profiling Xpatchf, the frequency domain portion of Xpatch, to reveal any
repetitive functionality and periodicity [10]. This profiling identified the ray-tracing
portion of the multi-bounce feature of Xpatchf as a candidate for a hardware
implementation [10:3-11]. Aspects of the ray-tracing algorithm are computationally
independent, enabling many rays to be processed simultaneously. Captain Kadrovach
designed a hardware model, called a Voxel Unit (VU), to handle the multi-bounce RCS

processing. He envisioned that multiple VUs under the control of a single
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microprocessor would be used in parallel to achieve speedups greater than two orders of
magnitude when using a network of eight cards each with a four-by-four array of VUs

[10: vii,4-2]

The research of Captains Suhr and Kadrovach and Lieutenant Work has shown
the advantages parallelism can offer for radar processing. While Captain Suhr
demonstrated the speedup possibilities inherent in a serially designed electromagnetic
code, Captain Kadrovach focused on a portion of a code and the description of hardware,
the VU, to accomplish this portion in parallel. DSP development tools with parallel
design support offer the designer the ability to make these design decisions at a high level

and automate the implementation.

The fast Fourier transform (FFT) and more specifically, the two-dimensional FFT
is another useful algorithm in radar processing applications. Like the ray-tracing
algorithm, the 2-D FFT algorithm may benefit from parallelism. Tools such as SPW
allow a designer to experiment with different parallel partitioning approaches, data rates,
and numeric formats at a block diagram level to determine the best solution for given

requirements.

Digital Signal Processing

Real world DSP is the real-time processing of converted analog signals [1:3].
Analog to digital conversion takes place either on-chip or off-chip after which
manipulation of the digital signal as bits and bytes simplifies to mathematical operations

in a digital computer. The results can then be converted back to analog signals via digital
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to analog converters. To process real-time data, DSP processors must possess the speed
and throughput necessary for continuous processing to handle incoming data as it
becomes available. However, computing requirements now surpass the capabilities of
single-chip DSP processors. For example, algorithms that integrate speech
coding/decoding into a multi-media environment require 1 to 30 million instructions per
second (MIPS) which is well within the 30 to 50 MIPS capability of today’s computer
workstation [3:269]. Emerging applications, such as video coding/decoding and medical
imaging algorithms, will require 0.1 to 10 billion instructions per second [3:269].
Current DSP processors with processing rates from 1 to 30 MIPS are not capable of

handling these emerging applications.

Since DSP processors are designed with signal processing in mind, they have
capabilities not found in conventional microprocessors. To handle large amounts of data
in real time, DSP processors’ internal architectures differ from those of conventional
microprocessors. For example, the TMS 320 series manufactured by Texas Instruments

uses a Harvard-type architecture [16] as illustrated in Figure 4.
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Figure 4 - Harvard Architecture [16:41]

The Harvard architecture has separate address spaces for instructions (IM) and data (DM)
to allow for concurrent instruction and data fetching [1:482]. The TMS 320 architecture
is different from a conventional microprocessor which must sequentially access
instructions and data from a single address space. Another characteristic unique to the
DSP processor is the existence of the single-instruction multiply~and—acc;umulate (MAC)
operation [1:482]. DSP algorithms often require a sum-of-products arithmetic operation
which is handled by a MAC operation. The use of a MAC operation is illustrated by

examining the difference equation of a nonrecursive digital filter of order M:

yinl=> B, *x[n—m] (1)

where By, are filter coefficients [13:614]. This difference equation is an example of the
need for a MAC operation. Other features of DSP processors vary depending on the

particular manufacturer, but the different internal architecture and presence of the MAC
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operation are two characteristics which distinguish the DSP processor from conventional

rnjcroprocessors.

DSP systems may be classified into different families. These are the Bit-Slice,
Word-Slice® (registered trademark of Analog Devices, Inc.), single-chip DSP
microcomputers, and DSP microprocessor families. Bit-slice systems were early attempts
at DSP parallelism using small but fast subunits to build a required word-length [3:250].
The Bit-Slice approach, which used medium scale integration technology, has since been
surpassed by the Word-Slice® approach due to the improvements in very large scale
mtegration (VLSI) technology [3:252]. Word-Slice® systems benefit from fewer
components with similar performance. Single-chip DSP microcomputers and
microprocessors are designed primarily for individual use, with the single-chip DSP
processor the most self-contained [3:252]. An abundance of single-chip DSP
applications has led to a very competitive market, and therefore the price-performance
ratio for this family of processors is relatively low. Of the four families, the single-chip
DSP microcomputer is the best building block for a parallel architecture since it offers the
best price-performance ratio using the latest in VLSI technology. Appendix A provides
the Pocket Guide to DSP Processors and Cores [14] which provides a sampling of DSP
processors and their characteristics to include architectural details, RAM and ROM sizes,

and unit prices.

Another characteristic of DSP processors which may be required of a particular
application, is low power operation. Portable consumer electronics such as pagers,

cellular telephones, personal audio equipment, and laptop computers demand low power
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consumption to extend battery life [15]. DSP processors employ several techniques for
power reduction. Reducing the supply voltage is one technique since power consumption
is proportional to the square of supply voltage [7]. This reduction is possible through the
tighter integration of transistors on a chip. Power management features such as sleep/idle
modes, clock frequency control, and control over unused peripherals and outputs are also
used to reduce power consumption [7]. System and programming techniques to avoid
external memory access and unnecessary logic state transitions also help to reduce overall
power consumption [7]. The competitive DSP market is forcing manufacturers to use
these methods to achieve the longest battery life. While ASICs can be designed to
minimize the number of transistors necessary for an application, the existence of power

reduction measures on DSP processors makes them attractive for low power applications.

Parallel/Distributed DSP Designs

~ With parallel processing, speed and throughput of single-chip DSP processors can
be surpassed. Simply put, parallel processing techniques may be used to take advantage
of the parallelism inherent in many DSP algorithms. That is, the calculations involved in
signal processing required are often independent so that the work can be partitioned
among two or more separate processors. Parallel processing has long been used to
connect multiple microprocessors, and the associated architectures and algorithms

developed for microprocessors are applicable to parallel DSP.
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Georgia Institute of Technology Digital Signal Multiprocessors

The concepts used in parallel microprocessor architectures may be applied to DSP
processors. Continuing research at Georgia Institute of Technology on Digital Signal
Multiprocessors (DSMP) systems. At Georgia Tech, two experimental laboratory DSMP
systems have been built. The two laboratory systems are known as OSCAR (Optimal
Synchronous Cyclo-static Array) and OSCAR-32 [16:293]. These systems represent the

first of multiprocessor systems designed for DSP.

The first DSMP prototype at Georgia Tech, OSCAR, was completed in 1986. The
OSCAR project was divided into two phases. The first phase, OSCAR I, was a small-
scale supercomputer model which consisted of sixteen commercially available processors

in a 4x4 rectangular array.
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Figure 5 - OSCAR 1 [16:293]

OSCAR II was to be built using 128 processors, but funding cuts prevented its
realization. The OSCAR I was a complex system where each processor contained five
fully parallel communication ports, a 32-bit floating-point arithmetic unit, local memory,

address generation unit, micro-controller, and a debugger/monitor processor [16:294].

The second DSMP prototype, OSCAR-32, was built at Georgia Tech in 1987.
OSCAR-32 is a reconfigurable ring structure of 32-bit processors with each processor
resident on a constituent processor boards (CPB). Up to sixteen of the CPBs can be

connected to form a ring of processors.
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Figure 6 - OSCAR-32 [16:301]

The OSCAR-32 uses the AT&T WE-DSP32 floating-point signal processing
microcomputer which provides high-speed processing at the expense of heavy timing

penalties for inter-processor communication [16:297].

The experimental DSMPs at Georgia Tech are examples of the use of parallel
processing concepts of architecture and algorithm design for signal processing

applications. These machines had general purpose signal processing in mind. However,
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even within the scope of signal processing, there exists a variety of applications which

could benefit from different architectures.

DSP Multiprocessor Architectures

A paper by Bier and Lee [17] describes several abstract multiprocessor
architectures for real-time DSP. Each of the architectures contain a memory shared by
the individual processors along with a controller processor which grant access to a bus
connecting the processors to the shared memory. The Gated-Shared-Memory
Architecture uses a gate keeper as a hardware implementation of the semaphore concept
[17:299]. To avoid the use of a gate keeper and its complexity, a central controller, called
the MOMA (Maintains Ordered Memory Accesses), is used in an Ordered Shared-

Memory Architecture. 1
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Figure 7 - Bier and Lee Architecture [17:300]




The MOMA takes advantage of a-priori knowledge of shared memory accesses by the
processors. The MOMA grants access to the bus and the shared memory in a prespecified
order. The main advantage of this scheme is that no explicit hardware or software is

required to resolve memory access issues [17:299-300].

Another multiprocessor architecture for DSP is described by Baraniecki and
Baraniecki. The architecture is composed of ‘N-Clusters’ each consisting of 1 to M
processor elements. The processors within a cluster share a common main memory for
application programs and a common database memory. Memory accesses are handled by

two interconnection chips.

External

Host
Request __o! Proc- Memory
essor
System Control Bus
[ X J
Cluster 1 Cluster 2 ... Cluster N
nterface | fnterface | neepsace
- >

TDM BUS

Figure 8 - N-Clusters Architecture {18:94]
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The entire system is controlled by a single processor known as the host with a control and
data bus interconnecting the different clusters [18:90]. While this architecture has the
flexibility to handle a wide range of applications through various partitioning schemes
among the different clusters, the repeatability and limited communication requirements of

ray-tracing does not require such a complex architecture.

Two hardware examples of parallel DSP systems use dual port memories to

handle inter-processor communication.

Address

-Address
Data

Processingl RD/MW
Element 1
(PE1) BUSY

D/WR |Processing

Element 2
BUSY (PE2)

Figure 9 - AAEPAR Dual Port RAM [19:150]

The Advanced Educational Parallel (AdJEPAR) DSP system uses boards containing
TMS320C25 DSP processors hosted by an IBM PC. The PC host handles
communication between processors or from the processors to the host by dual port
memory for simplicity, speed, modularity, and configurability [19:149]. A system used

for image processing described in [20:494] also makes use of a dual port memory




configuration for message passing and intermediate storage. While both examples use
this configuration for higher performance/cost ratios, the number of processors and the
amount of communication could hinder performance as processors not adjacent pass
messages through intermediate processors. This approach does offer a simple solution for

interconnection of multiple processors.

Rapid Prototyping and DSP Development Tools

The rapid growth in the DSP industry over past decade has seen equal growth in
the number of software tools and what these tools offer the signal processing system
designer. The most sophisticated of these environments allow a designer to realize an
algorithm in a hardware prototype or even a VLSI layout in a fraction of the time once
required. Benefits of using these tools include version control and automatic design rule
checking along with simulation, test data generation, software generation, and hardware

synthesis.

A simple methodology for the development of a DSP system can be defined by
the design, simulation, and implementation stages. In design, a system based upon a
specification is designed at a high level usually graphically. Simulation includes test
generation to determine if the design is functioning as intended. Implementation can
consist of software generation for a workstation, a network of workstations, or a DSP
chip. Implementation can also include generation of hardware description language code
like VHDL to be used with synthesis tools for the fabrication of a custom chip.

Sophisticated tools provide the means to accomplish each of these stages.
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Block diagrams are the most common way to represent a signal processing
system. Block diagrams have long been used for documentation and the use of these
diagrams in software tools provides a way to describe, document, and analyze a signal
processing system. A system block diagram is represented as a network of transfer
functions, data sources and sinks, and control functions. The following block diagram,

included as part of the SPW tutorials, represents a notch filter*.

* A notch filter is used to attenuate frequencies within a specified band.
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These blocks are interconnected with lines or arrows to represent data movement. The
block diagram can also be referred to as a dataflow graph. Each block in the system has

an underlying computational model to define the block’s behavior [21].

27




Simulation of a system is performed using either a synchronous dataflow (SDF) or
dynamic dataflow(DDF) model. In SDF, each block consumes or produces a fixed
number of samples prior to execution, whereas a DDF block can consume and produce
varying numbers of samples on its inputs and outputs [21]. The DDF simulation model is
supported by Mentor Graphics” DSP Station and COSSAP. SPW uses the SDF model for
simulation. For the purposes of analyzing the data produced in a simulation, the
capability data plotting and parameter changing during simulation is advantageous. SPW

includes the Signal Calculator for analysis purposes.

While most block diagram based software tools offer simulation capabilities, few
have the capability to generate software code and even fewer support hardware synthesis.
Tools with hardware synthesis support are the most expensive with costs in excess of
$30K compared with PC software tools without synthesis support costing from $500 to
$5K [21]. In addition to SPW’s HDS tool, DSP Station and COSSAP also support
hardware synthesis. Synthesis support can be in the form of either a register-transfer-
level (RTL) design or a behavioral level design. All three tools support RTL designs, but
only DSP Station and COSSAP produce behavioral descriptions. RTL designs are
expressed in terms of RTL elements such as registers, multipliers, and shifters while a
behavioral level design dictates nothing about implementation and allows the synthesis

tool to handle details [21].

A few software tools support simulation and software generation for parallel
systems. These include SPW’s MultiProx, Pegasus from Jovian Systems, and RIPPEN

from ORINCON Technologies. MultiProx allows a designer to partition a design for
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multiple processors. Individual code can then be generated for each processor in the

system along with the communication required among the processors in the system.

Real-time testing on a development board containing multiple DSPs can be monitored to

analyze load balancing. Table 1 contains the uniform resource locators (URLSs) for block

diagram based signal processing development tools where additional information

regarding these products may be obtained.

Table 1 - URLs of publishers of block diagram based signal processing tools

Publisher Software Package Publisher URL
Cadence/Alta Group Signal Processing WorkSystem http://www.altagroup.com/
Hyperception Hypersignal-Windows Block Diagram http://www.hyperception.com/
Jovian Pegasus Parallel Processing Design Environment http://www jovian.com/jovian/
Mentor Graphics DSP Station http://www.mentorg.com/

Orincon Rippen http://www.ppgsoft.com/rippen.htmi
Signalogic DSPower http://www.signalogic.com/
Synopsys/CADIS GmbH. COSSAP http://www synopsys.com/

U.C. Berkeley Ptolemy http://www.ptolemy .berkeley.edu/

Of the tools available for signal processing application development, SPW offers

the most promise for rapid prototyping. Algorithm design begins using intuitive,

graphical block diagrams as a system specification. Next, the algorithm’s block diagram

can be simulated for proper operation. Implementation can take the form of either code

generation for workstations and off-the-shelf DSP processors or VHDL code for synthesis

and the fabrication of a custom VLSI chip.
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Software Evaluation Factors

A well designed software package is one which strikes a balance between ease of
Jearning, ease of use, and functionality [22:13]. To evaluate a software package, each of
these factors must be kept in mind while learning to use and eventually using a software
package to perform tasks it was designed to perform. Ease of learning is the extent to
which a new user can become proficient with the software with minimal training and
practice [22:13]. What is the quality of the introductory tutorials? How long does it take
to gain proficiency with the software? Ease of use is the extent to which the software
allows an experienced user to perform tasks with minimal effort [22:13]. Are there
shortcuts which allows an experienced user to perform tasks more quickly? Functionality
is the extent of different capabilities the software provides [22:13]. Does the software
provide all the necessary functions and sufficient options to tailor those functions? Is the
user protected from complexity while at the same time given sufficient capabilities to
keep from outgrowing the system? While evaluating software, these factors and the

techniques to optimize them must be kept in mind.

In his book on computer interface design guidelines, Brown describes four
techniques for optimizing the ease of learning, ease of use, and functionality of a software
package [22:14]. The first technique is to design for novices, experts, and intermittent
users alike. Menus should be available for the novices and intermittent users, but
shortcuts such as keystroke combinations should be available for experienced users. The
second technique is to avoid excess functionality. Functions should be prioritized by
estimated frequency of use so that the more used are easiest to perform while seldom used

functions are accessible through secondary paths or eliminated entirely. The third
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technique is to provide multiple paths through the use of menu bypass, stacking or type-
ahead techniques, and user-defined macros to handle the same task. The fourth technique
is to design for progressive disclosure and graceful evolution by making basic functions
simple to learn and frequent tasks quick to perform, encouraging experimentation by
minimize consequences through reversible actions, and using defaults to minimize the

user choices to produce the most likely outcome [22:15-17].

There are various other design details to consider when evaluating a software
package. For example, the appropriate use of color allows a user to locate or identify
classes of information with greater speed and reliability [22:66]. Icons, when used
correctly, can simply task selection. Error messages should allow a user to learn what
was done incorrectly and how to go about correcting the error [23:ix]. On-line
documentation should not just be an electronic version of what is available from the
printed manuals, but it should supplement the manuals by being content-sensitive. A well
designed software package uses all of these elements to contribute to the ease of learning,

ease of use, and functionality of a system.

Summary

This literature review provides background information on high-speed avionics
signal processing applications. Research has shown the advantages of parallelism and the
parallelization possibilities existing in the avionics application, Xpatch. Algorithms such
as the FFT can also exploit the advantages of parallelism. The unique characteristics of
the single-chip DSP microcomputer make it an ideal candidate to serve as a building

block for a parallel architecture. Careful analysis of the architectures described herein is
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required to determine their applicability to a particular algorithm. An overview of
different DSP development environments was provided along with methods to evaluate
them. Environments such as SPW allow a designer to design, simulate, and implement a

DSP algorithm. After an explanation of the algorithm selected, the next chapter describes

an algorithm design using SPW.
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lll. Algorithm Selection and Design

This chapter begins with an explanation of the algorithm selection which is
representative of algorithms encountered in high-speed avionics applications. The
selected algorithm serves as a basis from which to evaluate SPW as a tool to support
rapid prototyping or parallel signal processing algorithms. The explanation of the
algorithm selection is followed by an introduction to the selected algorithm, the 2D fast
Fourier transform (FFT), beginning with the fundamentals of continuous Fourier
transform and ending with the parallel multidimensional FFT. A description of the SPW

2D FFT design follows.

Algorithm Selection

To adequately evaluate whether or not SPW properly blends ease of learning, ease
of use, and functionality, the software must be sufficiently exercised. That is, an
algorithm must be chosen which represents a class of problem which might be used in an
avionics application. Moreover, the chosen algorithm must have a level of complexity to
sufficiently test the simulation and code generation capabilities of SPW. Toward these

aims, the 2D FFT has been selected as the algorithm to implement with SPW.

The 2D FFT has found use in a variety of applications. Applications include
tomography, data compression and picture processing [24:216]. Also, the 2D FFT is used
for two-dimensional waveforms encountered in geophysical arrays, gravity and magnetic
data, and antenna analysis [25:232]. Radar applications include cross-section

measurement, moving target indicators, synthetic aperture, Doppler processing, pulse
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compression and clutter rejection [25:2-3]. Any of the aforementioned applications can
benefit from possible speed and accuracy improvements. However, in real-time
applications where data post-processing is not an option, speed becomes a hard

requirement.

Xpatch algorithms were not chosen to design and implement in SPW for several
reasons. When this research was initiated, the offices responsible for xpatch maintenance
were in the midst of reorganization. This reorganization hindered efforts to receive
foresight into the future of xpatch. The restricted nature of the xpatch code itself also
limited accessibility. Interest expressed by both the sponsor, Wright Laboratory, and
Rome Laboratories as well as the universal applicability of the 2D FFT to applications

other than radar led to the ultimate selection.

Introduction to the Fast Fourier Transform
Fourier Transform

Essentially, the Fourier transform of a waveform is the decomposition of that
waveform into sinusoids of varying frequencies which must sum to the original waveform

[25:4]. Mathematically stated, the Fourier integral is defined as

H(f)= Th(t)e-ﬂ"f'dt @

where A(t) is the time domain waveform decomposed into a sum of sinusoids of varying
frequencies, and H(f), the frequency domain, is the Fourier transform of A(?) if the integral

exists for every value of £[25:9]. Traditionally, lowercase letters represent functions of
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time while uppercase letter represent functions of frequency. The Fourier transform is a
continuous function. For computer calculations the Fourier transform must be discretized

resulting in the discrete Fourier transform (DFT).

Discrete Fourier Transform

The DFT approximates the continuous Fourier transform by representing the
waveform to be decomposed as a set of regularly sampled points rather than a continuous
waveform. Thus, the DFT is a linear transformation which maps a set of regularly
sampled points from a cycle of a periodic signal onto an equal number of points to
represent a signal’s frequency spectrum [7:377]. The DFT approximation can
unambiguously determine frequencies within a range as defined by the Shannon’s
sampling theorem [26]. This is also known as the Nyquist rate where the frequencies
contained in the signal are all less than half the rate at which the points are sampled
[27:9]. However, when accounting for real-world restrictions such as finite word lengths
and associated quantization error, rates as high as 10-to-1 are suggested. Mathematically,

the DFT is stated as [27:10]

N-1
A(k) - Ea(n)* e—j21rnk/N (3)
=0

where
e N — cos(2mnk / N)— jsin(2mnk / N)

N: number of complex data points

n: input point index
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k: output point index
a(n): discretized input signal
While this discretized approximation of the Fourier transform can be handled by digital

computer, the number of operations can be reduced as found by Cooley and Tukey in

1965 to form the FFT.

Fast Fourier Transform

The algorithm Cooley and Tukey devised in 1965 and its subsequent variations
which compute the DFT of an n-point series in O(nlogn) operations are collectively
referred to as the FFT [7:377]. The FFT allows Fourier analysis of signals through the
use of digital hardware and computers instead of analog filter banks and spectrum
analyzers [28:60]. The FFT is essentially a recursive algorithm for computing the DFT
[29:231]. An excellent explanation of the development of the FFT is provided in
[25:132]. Here, an example shows how the matrix factorization process introduces zeros
into the factored matrix thus eliminating the need for some multiplication operations.
Essentially, the efficiency of the FFT is based on the capitalizing on the symmetry and

periodicity attributes of the complex phase portion of the DFT calculations [24:217].

The FFT offers an improvement over the DFT with reduced computational load.
The computational load is reduced from 4N? additions and 4N* multiplications for the
DFT to 2N additions and Nlog,(N) multiplications for the FFT [27:28]. Reduced
quantization noise is an indirect benefit from the fewer number of calculations required.
Quantization noise is reduced since fewer multiplications are performed and therefore

there are fewer times where the multiplication result must be rounded off [27:28].
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The FFT has two disadvantages. The reorganization of data and the computation
reduction necessitates computation of all of the output frequencies even if only a few are
required [27:28]. While the DFT outputs one output frequency at a time, often all
frequencies are needed and the computational savings compensate for this weakness
[27:28]. Another disadvantage to FFT algorithms are their inability to handle inputs
varying numbers of points. That is, the number of input points is fixed. To overcome
this, zero padding is can be used for signal with fewer samples than the FFT algorithm
[27:14]. While adding zeros to a signal allows for variable data collection lengths for a
given FFT algorithm, the real and imaginary responses are affected [27:15]. The affects

of this can be minimized through the use of weighting (or window) functions [27:35].

Multidimensional Fast Fourier Transform

The multidimensional FFT extends the single dimensional FFT to two or more
dimensions. A 2D signal is a function s(x,y) of two variables x and y to describe 2D
waveforms such as images [25:232]. Video, for example, offers a third dimension of
time. Assuming the 2D signal is periodic in all dimensions, in the continuous space, the

2D Fourier transform is given by

H(u,v) = j B j " hx,y) e T dxdy @
where h(x,y) is the 2D function and H(u,v) is the 2D transform of A(x,y) [25:232-233].

Similar to the 1D transform, the 2D (N; x N,) discrete Fourier transform is given by

[27:74]
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Ni-1 Np-I

Ak k)= Y alm,ny)e 2rimh/ Ml (5)

.o np—l

where
e b INR I = cog(2m(nk, | N, +nyk, | N,))— jsin(2u(nk, / N, +n,k, / N,))

N; x N,: size of discretized input signal
nj, ny: input point indices

k;, k;: output point indices

and a(n;,n,) and A(k),k,) are the discretized input and output signals respectively. This
separability of the summations in terms of »; and n; leads to the row-column

decomposition of the 2D Fourier transform.

Multidimensional transform implementations can be hampered by the volume of
sampling data required. To reduce the amount of sampling points required, different
sampling geometries may be employed. The straightforward, uniform rectangular
sampling pattern is most often used for simplicity of use and implementation. This
consists of periodic sampling in rectangular coordinates as illustrated in Figure 12

[28:36].
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Figure 12 - Rectangular sampling grid [28:36]

This is also known as the sampling matrix or lattice [28:266]. It can be shown that for
higher and higher dimensions of transforms, the rectangular sampling scheme does not
provide the most efficient sampling method in terms of the number of samples needed to

represent a multidimensional signal. Figure 13 shows a hexagonal sampling grid:
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Figure 13 - Hexagonal sampling grid [28:44]

The efficiency gains of a hexagonal sampling scheme (hyperspherical) over a rectangular
sampling scheme (cubic) is quite substantial with increasing dimensions of transforms as

shown in Table 2.

Table 2 - Ratio of efficiency of an M-dimensional cubic lattice to a hyperspherical lattice [28:47]

M Efficiency
1 1.000

2 0.866

3 0.705

4 0.499

5 0.353

6 0.217

7 0.125

8 0.062

40



Multidimensional DFTs are mathematically represented using matrices in order to
represent the periodicities due to both the sampling lattice and the signal to Fourier

transform [30:45]. Refer to Appendix B for more information.

Row-Column Decomposition

The most natural method of calculating the 2D Fourier transform is the row-
column decomposition method due to the structure. This method uses the separability of
the 2D Fourier transform to decompose the problem into two sets of 1D transforms. By

factoring the exponential term

o 2RIk N gl NS Y 2Rk [Ny =2 gk N )
the two summations may be separated to give
N -1l v, -1
—j2 ~j k
| D, almm e k) ik 2 ™
ny=0| ny=0

This results in taking a 1D Fourier transform in the n, dimension followed by a 1D
Fourier transform in the n; dimension or a row-column decomposition. Of course, this
can be accomplished in either order. An excellent graphical development of the 2D
Fourier transform is given in Brigham [25:241]. The following figure illustrates the row-

column decomposition FFT:
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Figure 14 - Graphical development of the 2D FFT with row-column decomposition [25:242]
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Figure 14 (c) gives the unordered 2D FFT result. Conventional viewing would
require rearranging the FFT results. If the FFT results were divided into quadrants,
rearranging would be accomplished by performing a right circular shift through two

quadrants [25:244] as illustrated in Figure 15.

Figure 15 - 2D FFT reorganization for conventional viewing [25:245]

The row-column decomposition has an advantage in its simplicity. The
decomposition is intuitive and easy to visualize. Also, a 2D transform algorithm can be
constructed out of 1D transform algorithms that may already be provided. 1D algorithms
are readily available and highly optimized for different computational machines. For
example, the CLASSPACK Signal Processing Library contains optimized C routines to
perform FFTs [31]. Thus, construction of a 2D algorithm can benefit from their

computational efficiency.
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Vector-Radix Algorithms

A 1D FFT achieves computational efficiency through the “divide and conquer”
strategy where each transform length is recursively divided by a power of 2 into smaller
transform lengths [28:76]. Like the 1D FFT, the 2D vector-radix FFT decomposes a 2D
DFT into successively smaller 2D DFTs until only trivial 2D DFTs remain [28:76]. This
basic structure of the algorithm is commonly called a butterfly. The decimation-in-time
version of the vector-radix algorithm is accomplished by expressing a (N; x Np)-point

DFT in terms of four N;/2 x N,/2 DFTs represented by four summations [28:77]:

N/2-1N/2-1 o
Sk k)= 3 3 x(2m, 2my )W o
m;=0 my=0
N/2-1 N/2-1
Sor (ki>ky) = 2 zx(Zml ,2m, +1)W13m1k‘+2nhk2 &)

m1=0 m2=0
N/2-1N/2-1 X X
Syo (ky ky) = Z Zx(Zml +1,2m, YW, mharemeks 10y
m=0 my=0
N/2-1 N/2-1
Sulkky)= 3 3 x(2m, +1,2m, + HW2rhr2nsh o

m =0 m;=0

One summation handles data with both even indices, a second handles data with even and
odd indices, a third handles data with odd and even indices, and a fourth handles data

with two odd indices [28:77]. Figure 16 illustrates a single radix-(2 x 2) butterfly:
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Figure 16 - Isolated Radix-(2 x 2) Butterfly [28:78]

Figure 17 illustrates how a larger FFT is constructed from smaller FFTs:
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Figure 17 - Radix-(4 x 4) FFT built upon radix-(2 x 2) FFTs (only one of the four butterflies is shown in the

second column) [28:79]

Refer to Dudgeon [28] for a complete derivation of the vector-radix FFT.
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Computational savings are the primary advantage of the vector-radix algorithm
over the row-column decomposition. The number of complex multiplications for the row-

column decomposition is

M
Chreprr = TNM log, N (12)

where
M = number of dimensions
N = number of complex points

and the number of complex multiplications for the vector-radix algorithms is given by

C —ENMIO N 13
w@x2) T T ou g» (13)

Table 3 shows the computational savings in terms of complex multiplications required for

vector-radix (C,;) and row-column (C,.) multidimensional FFTs:

Table 3 - Comparison of number of complex multiplications required for M-dimensional FFT algorithms

[28:82]
M Cor2x2)/Crrc FFT
2 0.75
3 0.58
4 0.47
5 0.39

The vector-radix algorithm requires fewer and fewer complex multiplications as

compared to the row-column algorithm as the number of dimensions increases. The
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number of complex additions required is the same for both methods and is given as

[28:82]

A, e = A, = MN’® log, N (14)
Though each approach requires the same number of complex additions, the vector: radix

does offer savings in the number of complex multiplications required.

Parallel Two-Dimensional Fast Fourier Transform
Parallel Row-Column Decomposition Fast Fourier Transform

A 2D FFT with row-column decomposition can be accomplished in parallel by
either performing parallel 1D FFTs serially, performing serial FFTs in parallel, or by a
combination thereof. Choosing among the approaches depends largely on the resources
available, for example, the number of processors and the availability of existing code.
Two algorithms for performing parallel 1D FFTs are described in Kumar [7]. They are

the binary-exchange algorithm and the transpose algorithm.

Binary-Exchange Algorithm

The binary-exchange algorithm is described in Kumar for a hypercube for one or
multiple elements per processor and a mesh architecture. The FFT structure lends itself
to the hypercube architecture since the required communications use the added
connectivity of the hypercube topology efficiently. For the one element per processor
approach, the FFT is cost-optimal with a processor-time product of ©(n log n), equal to

the complexity of a serial n-point FFT [7:383]. Since, this approach is usually not




feasible for a large number of points, the multiple elements per processor approach must

be taken as shown in Figure 18.
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Kumar shows that for this approach the binary-exchange algorithm is reasonably
scaleable if the problem size is increased at the rate of O(p log p) and the communication
bandwidth and processing speed of the processors are balanced [7:388]. On the other
hand, the binary-exchange algorithm is not very scaleable on a mesh since the problem
size must be increased exponentially with the number of processors to maintain constant

efficiency [7:390].

Transpose Algorithm

The transpose algorithm, which uses matrix transposition, is useful when the ratio
of communication bandwidth to processor speed is low and high efficiencies are required
[7:393]. In the transpose algorithm, a ~/n -point FFT is computed for each column of
Jnx Jn array of points. After the array is transposed (the only communication
required), n -point FFTs are computed for each of the columns for the transposed array

[7:394]. Figure 19 shows the how the elements are combined to compute a 16 point 2D

FFT using 4 x 4 square array.
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Figure 19 - Combination of elements in a (4x4)-point 2D FFT [7:394]

The choice of whether to use the binary-exchange or the transpose algorithm depends on
the relative values of the communication time parameters with SIMD and shared-memory
computers leaning toward the transpose algorithm and MIMD computers with the binary-

exchange algorithm [7:396].
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Parallel Vector-Radix Fast Fourier Transform

Since the vector-radix approach to the FFT is similar to the 1D FFT in that both
are decomposed into smaller FFTs, a similar decomposition among multiple processors is
possible. Two approaches are possible. The first approach involves pipelining where one
or more of the columns of the signal flow diagram are handled by each processor. This
approach would be more suitable for performing a series of FFT computations for higher
throughput at the expense of latency. For example, if a single processor were assigned to
handle the computations of each stage, logoN processors would be required for a N x N
2D FFT. This results in ©(N?) computations assuming the same execution times for both
complex additions and multiplications. On the other hand, partitioning the graph
horizontally would reduce latency times subject to the increased communication required
between processors. If the number of processors, p, were equal to N for an N x N FFT,
the computations would be ®(Nlog,N). The overhead required for communication would
be ©(Nlog,N) and O(N?) for the vertical partitioning (p=Nlog,N) and horizontal
partitioning (p=N) respectively. The pipelining method can benefit from fewer messages
with less processors since messages may be combined between stages for better

efficiency whereas horizontal partitioning requires communication between all processors

at each stage.

Tensor Product Programming Language
Another approach to designing FFT algorithms is through the use of tensor
products. The tensor product notation is a concise method for characterizing complex

signal processing algorithms with mechanisms for specifying operation for serial, vector,
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or multiprocessor computers [32:41]. The tensor product is a binary matrix operator used
to combine two matrices to form a single, larger matrix, and tensor product factorizations
can reveal underlying symmetries which may be used to design efficient algorithms
[32:41]. The reader is referred to [32] for an explanation of the tensor product approach

and the applicability to FFT algorithms.

Two-Dimensional Fast Fourier Transform Design in SPW
Algorithm Selection

The vector-radix 2D FFT was chosen as the algorithm to implement in SPW for
its applicability to avionics and more specifically, radar applications. While a row-
column approach would have sufficed, the vector-radix algorithm is well suited in a
hierarchical design environment whereby FFTs capable of a larger number of input points
are built using FFTs of fewer points. Thus, larger and larger systems may be constructed
while increasing system complexity and exercising the software’s capability to handle this
complexity. Also, the regular structure of the vector-radix 2D FFT is well suited for

partitioning for multiple processors.

One assumption must be stated before block diagram design. First, input
sampling points are assumed to be equally spaced in each dimension or rectangular.
Algorithms capable of handling different geometries may be designed, but there is no
specific need for that capability in this research. Furthermore, in radar applications of the
2D FFT, source data is collected in traditional rectangular form. While other geometries
can use more efficient sampling geometries, such an approach would require more effort

on the sampling side of the problem.
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Block Diagram Design Example

The block diagram design process begins with the Block Diagram Editor (BDE)
of SPW. In the BDE, a signal flow diagram of a particular algorithm is constructed by
connecting functional blocks together. SPW provides a wide variety of functional blocks
(approximately 350) for this purpose, and SPW has the facility to allow a designer to
create custom blocks by linking in FORTRAN or C programs to a new block. At the
block diagram design level, features such as self-test and redundancy may be designed in
to address reliability. Reproducing sections of a block diagram design and adding

decision-making logic is possible within the BDE.

For the purposes of the vector radix 2D FFT, all the required blocks are provided.
Levels of hierarchy are used to hide detail at higher levels of abstraction. Every block,
whether it be SPW-provided or user-designed, contains a detail model and a symbol. The
following explanation of the block diagram design process centers on the design of the

basic vector radix-(2x2) butterfly.

Butterfly Detail Model

The detail model is the level of design which determines how a particular block
functions. It consists of other blocks and the associated interconnections. The vector
radix butterfly consists solely of complex additions as shown by the following equations

[28:73]:

X(0,0) = x(0,0) + x(1,0) + x(0,1) + x(1,1) (15)

X(0,0) = x(0,0) — x(1,0) + x(0,1) — x(1,1) (16)
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X(0,0) = x(0,0) + x(1,0) — x(0,1) — x(1,1) (17)

X(0,0) = x(0,0) — x(1,0) — x(0,1) + x(L1) (18)

At first glance, it appears the calculation of the four points requires twelve
additions/subtractions. However, by calculating intermediate values, the number of

additions/subtractions may be reduced to eight:

a = x(0,0)+ x(1,0) (19)
b = x(0,0) — x(1,0) (20)
¢ =x(0,1)+x(1,1) (1)
d = x(0,1) - x(1,1) (22)
X(0,0)=a+c (23)
X1,0)=b+d (24)
XO0Dh=a-c (25)
X(Q)=b-d (26)

All that remains is to choose the necessary blocks to represent the required calculations.
Assuming the general case of complex input points, the complex addition and subtraction
blocks can be used to represent the respective additions and subtractions. The following
block diagram in Figure 20 shows the detail model for the butterfly with the appropriate

interconnections.
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Figure 20 - Block diagram detail model of the (2x2)-point butterfly

The in00 and out00 ports of the diagram represent the complex input point x(0,0) and
output point X(0,0) respectively. Note the ‘/2° on the signal lines which indicate complex

numbers. The hold inputs of the blocks may be used for synchronization purposes.

Butterfly Symbol Design

The BDE does have the capability to automatically generate a symbol for a detail
model based on the model’s inputs and outputs to the external world. Figure 21 shows

what BDE created automatically for the butterfly detail model:
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Figure 21 - BDE created symbol for the (2x2)-point butterfly

While suitable for most designs to hide detail and improve readability, the basic drawing
tools of the BDE allows a designer to create a symbol which may be more representative
of the block’s function. With the basic drawing tools (box, circle, line, and text tools) the

following familiar butterfly structure was created to make the block readily identifiable.

57



Figure 22 - Custom symbol for the (2x2)-point butterfly

SPW allows the designer to design multiple symbols to represent the same underlying
detail model. This is convenient for the design of the vector radix algorithm because it
allows the creation of multiple butterfly symbols of different sizes for different stages of
the design. For an example of this see Figure 17 where both columns contain identical

butterflies in function, but use different symbols for clarity.

Butterfly Block Diagram Testing

It is prudent in any design project to test the components at each level of design.
The combination of the BDE, the Signal Calculator, and the Signal Flow Simulator allow
such testing. Testing of the butterfly block diagram requires input points and
storage/observation of the resulting output points. For this, a system consisting of the

unit under test (UUT), signal source, and signal sink are required. SPW also has virtual
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instruments in what is called the Interactive Simulation Library (ISL) to monitor signals

during the simulation and provide interactive input.

Experimental Design

The UUT is simply added to a system model by adding the part through the use of
the associated symbol. This way the detail of the model in hidden and only the inputs
and outputs are accessible. It may be necessary to test at a lower level of detail so that
internal signal are accessible. A signal source is used to provide the signal input. This
block is the interface from a signal file stored on disk to the UUT. A signal sink then
collects the UUT’s outputs and stores them to an output signal file for viewing. Both the
input and output signals may be viewed and modified in the Signal Calculator. Figure 23

shows the test configuration for the butterfly block diagram.
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Figure 23 - Test system for the (2x2)-point butterfly

The test system makes use of vector input and output signals which are divided and

recombined when necessary. Two ISL blocks are shown as well. The window blcck

60




displays the results of the vector bar block. The vector bar block displays a bar chart of
an input vector to examine signals during the simulation. While useful for a cursory

examination of data, no numbers are shown on the chart so only relative values are given.

Butterfly Testing

For testing the butterfly, a two-dimensional input and output format is desired.
However, the Signal Calculator and the tools available in the ISL are designed to handle
one-dimensional signals. This requires that the input signal and the output results be
stored in a one-dimensional format. While this is of no consequence to the design, this
does hinder testing by not allowing signal viewing in the more natural two-dimensional
format. For one-dimensional signals, the tools of ISL are quite powerful ranging from
virtual spectrum analyzers and bar graphs for display to buttons and sliding bars for

interactive input.

One way of overcoming the data display limitations of SPW would be to use the
MATLAB interface blocks. SPW contains MATLAB source and sink blocks to read in
MATLAB-formatted input data and save MATLAB-formatted output data. While
matrices are the standard data format in MATLAB, SPW is limited to reading one-
dimensional data formats, and therefore, SPW reads matrices in column-major fashion.
For this reason, while MATLAB could be convenient for creating and viewing input and
output signals, care still must be taken in the manipulation of MATLAB matrix files in

SPW designs.

The difficulty in handling the input and output data in the simulations begs the

question, how should I/O be handled in a hardware implementation? The answer depends
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largely on the format and means of data collection for the input and the memory capacity
of the hardware. While the instantaneous availability of all input data is ideal, this is not
always feasible given throughput and memory limitations. For example, a (1024 x 1024)-
point 2D FFT requires 10E6 complex data points each of which may be represented by 32
or more bits depending on the chosen representation. This gives a 4 megabyte storage
requirement for the data alone. Given the large number of data points, some means of
decimation would be required. The throughput and memory requirements not only drive

the design, but also the hardware implementation choices.

Adding Levels of Hierarchy

Adding levels of hierarchy and complexity simply requires the addition of
multilevel blocks in other block detail designs. For example, a (4 x 4)-point radix-(2 x 2)
FFT is constructed using eight of the basic butterflies along with intermediate complex
multiplications. Figure 24 shows the detail model for this design. Note that the
intermediate complex multiplications use custom symbols to represent the complex
multiplication blocks. Also, the two different symbols for the butterfly detail design are

shown.
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Figure 24 - Block diagram detail model for the (4x4)-point FFT

This detail design was tested in a similar manner to the basic butterfly design. The
inability to easily handle the 2D data has a greater impact with the larger number of
points. Using four (4 x 4)-point FFT blocks, a (16 x 16)-point FFT may be created. Four
(16 x 16)-point FFT blocks may be used to construct a (64 x 64) point FFT and so on

until the desired size is reached. Larger and larger transform construction can become
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quite tedious as the number of interconnections increases. Also, testing quickly becomes

difficult using a 1D representation for 2D signals.

Parallel Partitioning in SPW

A designer may parallelize an SPW design through the use of the MultiProx
option. Any design’s block diagram may be partitioned by the designer for parallel
operation, but evaluation of the design using parallel processing metrics is difficult due to
nearly nonexistent parallel processing analysis support within SPW. The capacity to

analyze load balancing is parallel designs is discussed in Chapter IV.

SPW MultiProx Option

The MultiProx option of SPW allows a designer to partition a block diagram for
execution on one or more processors. After a block diagram has been successfully
simulated for a single processor, three steps are required to map the design to two or more
processors. First, the existing block diagram must be partitioned to identify which
processors are responsible for which functional blocks. Partitioning a block diagram is
accomplished from within the BDE. The block diagram is partitioned into subsections
known as regions. Second, MultiProx must generate the code for each processor and
generate the necessary interprocessor communication. MultiProx does so by
automatically inserting inter-processor communication (IPC) blocks between partitions.
Third, the partitioned, parallel design is simulated to determine correct operation and
evaluate the partitioning scheme employed. During simulation, real-time bar graphs are
available to monitor individual processor workloads to assess and re-partition if necessary

in an effort to balance load distribution.
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2D FFT Block Diagram Partitioning

Since partitioning in MultiProx occurs at the top-most level of hierarchy in a
block diagram, the choices made when designing building blocks affect the partitioning
options. For example, if a large portion of a design, in terms of computational
complexity, were combined to form one functional block to be represented in the top-
level block diagram, partitioning would allow only a single processor to handle the
calculations of that block. This situation would affect the designer’s ability and
flexibility to partition a design with suitable load balancing. This may require re-

examining the hierarchical structure entirely.

As discussed previously, two possibilities for partitioning a vector radix block
diagram implementation of the 2D FFT are through either a horizontal or vertical
partitioning of the diagram. To demonstrate the ease of MultiProx partitioning, the (4 x
4)-point FFT was partitioned vertically by columns using two processors. The
partitioning process is simple and straightforward requiring drawing simple rectangles to
enclose regions. In a similar manner, horizontal partitioning is possible. Each of tnese
partitioning strategies suggests a mesh topology of processors such as the OSCAR 1
discussed in Chapter II. As of this writing, the AFIT SPW installation is not properly
configured to allow simulation among multiple workstations to test the multiprocessor

partitioning.

Summary
This chapter introduces the 2D FFT and describes how a particular 2D FFT

algorithm, the vector radix FFT, may be designed with the use of SPW. The
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parallelization possibilities of the 2D FFT are also discussed along with how SPW and
the MultiProx enable a designer to quickly partition a block diagram for parallel
operation. Analysis is limited to checking a design’s functionality. The lack of support
for analysis using parallel processing metrics makes comparison to theoretical analysis
difficult. Other DSP development environments mentioned in Chapter II, Pegasus and
RIPPEN for example, offer similar parallel processing support as SPW. These tools
require test results from an implementation before useful comparisons may be made with
theoretical predictions. The next chapter discusses how the algorithm may be
implemented using the block diagram and the parallel processing analysis support SPW

provides.
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IV. Detailed Design and Implementation

Once an algorithm has been designed in block diagram form and successfully
simulated and analyzed, there are two paths supported by SPW to implement the design.
Code generation through CGS or VHDL generation through HDS are the two paths. This
chapter covers the CGS and HDS options and why a designer would choose one or the
other. SPW is also evaluated for whether or not it offers sufficient tools to allow the
designer to evaluate trade-offs. The CGS and HDS options are evaluated in the context

of implementing the 2D FFT block diagram design.

Code Generation using CGS
SPW’s CGS option converts a block diagram design using the BDE into a C code

implementation for execution on any platform which supports a C compiler [33:1-1].
This includes not only workstations, but also nodes of a multiprocessor machine and DSP
microprocessors. The following sections describe C code generation for workstations and

DSP microprocessors.

Standard C Code Generation System

The Standard C Code Generation System [33] produces generic C code which
may be compiled and executed on any platform with a C compiler. There are several
possible uses for generating C code from a block diagram for execution on a workstation
or network of workstations in the case of MultiProx partitioned designs. First, executable
code for workstations speeds simulation times. For the purposes of running multiple

simulations on different data, the extra overhead of SPW’s graphical interface can be




eliminated by compiling C code for execution on workstations independent of the SPW
environment. However, during initial development, the Signal Flow Simulator may be
the preferred method of simulation since design changes using CGS require recompilation
and the simulator block libraries have built-in error handling. Second, C code is portable
among all ANSI C compliant machines, and portability may be advantageous. Third,
executable C code for a workstation may be all that is required for a particular
application. A hardware solution is not always necessary. Executable C code or even

simulation results alone may be sufficient for algorithm validation purposes.

All the steps leading to executable C code for a block diagram are performed
automatically. A designer can create, compile, and even execute the C program for a
block diagram from within SPW. Each block in a block diagram design has an associated
“expression file” which is converted into instance-specific source code during code

generation [33]. Figure 25 illustrates the different components of SPW which are

involved.
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Figure 25 - Standard C CGS on Local Platform [33:1-3.]

user signal libraries. Block diagram designs are built using blocks from the block
libraries. If used, the Filter Design System (FDS) uses blocks from the filter libraries.
The BDE brings these components together to run simulations using the Signal Flow
Simulator and generate C code through CGS. A single SPW workstation is used to

generate, compile, and run the C code. A remote workstation may be used for

In Figure 25, the Signal Calculator is used to create and view signals from either SPW or

compilation and execution of the C code. This may be beneficial to perform compilation

and execution in the background or to use a faster machine, one which cannot host SPW.




2D FFT Code Generation

Code generation for the (4 x 4)-point 2D FFT performed without error. The first

step requires specification of the target platform as illustrated in Figure 26.

Figure 26 - Platform Selection [2]

Compilation and execution were also performed successfully from within SPW. The

following figure shows the window from which these tasks are accomplished:
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Figure 27 - CGS control window [2]

Status information regarding the creation, compilation, and execution are provided in the
lower portion of this window. An interesting capability of CGS is that ISL block
functionality is maintained even in generated C programs. This means that executable C

programs can generate interactive windows if so desired.
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SPW documentation suggests C code be generated to perform testing in lieu of
slower simulations within SPW itself [33]. This is probably the only utility to code
generation since execution times and code size do not compare with handwritten C
implementations. For a (4 x 4)-point 2D FFT, SPW-generated C code execution times
averaged 12.2 seconds over five runs. This is several orders of magnitude slower than the
2.33e-3 seconds reported for a (64 x 64)-point 2D FFT on a single node of an IBM SP2
[34]. The SPW-generated code execution times are however, faster than simulations
within SPW which take on the order of minutes to complete. This said, SPW-generated
code is best used for making multiple runs for validating block diagram design instead of
using the slower Signal Flow Simulator. The structure of SPW-generated C code is

provided in Appendix D.

The value of having portable C code is also suspect. Execution of C programs
generated by SPW require SPW software licenses to be checked out. This means SPW
must be running on the workstation. Remote compilation and execution is reportedly
possible, however two entire libraries of .c and .h files must be copied to the remote
machine in order to compile. The requirements of this process are briefly covered .in the

documentation [33].

SPW provides no means of evaluating algorithm design in terms of parallel
processing metrics for C code generated for workstations. Any execution time analysis
has to be performed by the designer through the use of UNIX system utilities outside of

SPW. There is no facility to determine the amount of overhead required due to
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interprocessor communication. The only support for parallel design analysis is provided

with code generation for DSP microprocessors.

Code Generation System for DSP Microprocessors
The primary use for generating code for execution on a DSP or multiple DSPs is

real-time testing on actual hardware representative of the final product. CGS supports the

following DSPs:

o AT&T WE DSP32C

¢ Motorola M96002

e Texas Instruments TMS320C30
o Texas Instruments TMS320C40

The procedure for generating code for execution on DSPs is similar to the
procedure for generating standard C code. The primary difference is the specification of
the target DSP and the additional hardware required. A complete setup consists of a
workstation and a PC hosting a development board containing one or more DSPs.
Through an Ethernet connection to the PC host, the workstation running SPW transfers
the C source files for compilation on the PC. The PC downloads the executable files to
the DSP(s) on the development board. The results of the execution on the DSP are

analyzed using the SPW Signal Calculator. The requirements of the host PC are

e IBM-PC AT or compatible computer with 640K bytes of memory

e DOS 3.3 or higher operating system

e PC-NEFS file transfer software (version 4.0a or greater)

e PC-NFS compatible Ethernet interface between the PC and SPW workstation

e acompatible DSP microprocessor development board
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Figure 28 illustrates the setup required.
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Figure 28 - CGS Using PC Development Board [33:1-4]

Figure 28 is very similar to Figure 25 with the exception of the added PC with
development board. Since the program and data for a particular design must be stored in
the memory and the PC. Complexity of the design may be limited to either’s memory
capacity. Both the PC and the development board may be controlled from the SPW

workstation using CGS commands in the CGS Run Control window.
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2D FFT Code Generation

The development board owned by WL is not supported by SPW for CGS control.
The only TMS320C40 development board supported by SPW/CGS is the Loughborough
Sound Images Ltd. Dual TMS320C40 Development Board with AM/D16SA Analog
Daughter Module [33]. The current 386-based PC which hosts the development board
currently does not have an Ethernet interface for connection to an SPW workstation.
While some software is provided with the PC/development board, no utilities for
communication to the board are provided. Therefore, while C code may be generated for
the DSP microprocessors on the development board, without PC to development bbard

communication utilities, programs may not be uploaded to the processors.

Use of a supported development board and control through SPW/CGS would
allow a designer to evaluate the load balancing for a parallel 2D FFT design. In this
setup, SPW, through the CGS Run Control window, can monitor processor workloads so
that load balancing may be observed. Only relative processor workloads are shown
without particular units of measurement. While this support is minimal, it would allow a
designer to return to the block diagram level, repartition the design, and observe the

effects of the changes on relative load balancing among the processors.

VHDL Generation Through HDS

The HDS option of SPW allows a designer to perform fixed-point simulations and
generate Hardware Description Language (HDL) to permit hardware synthesis. Figure 29

illustrates the different components of the HDS and their relationships.
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Figure 29 - Hardware Design Flow [35:1-11]

Figure 29 shows the paths to design fixed-point hardware systems. The upper half shows
how SPW and HDS are used for high-level system design. HDS provides the links to the
lower half where a HDL is used to specify the hardware implementation [33:1-10]. Since
a hardware implementation is limited by a specified number of bits in a fixed-point

design, a floating-point algorithm must be converted to a fixed-point algorithm. A fixed-
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point design is less complex than a floating-point design in hardware, but care must be
taken to choose the proper word length for anticipated data to be represented. Once HDL
code is generated in HDS, external VLSI editors, compilers, and synthesis tools are used

to generate a netlist which leads to silicon during place and route.

Before fabricating, a designer must make additional choices with regard to process
technology and packaging. None these decisions are possible using SPW tools. Instead,
VLSI experience is essential to assess which process technology and packaging is suitable
for the design based on size, cost, and performance factors such as speed and power.
While SPW allows for design and test of high-level algorithms, testing and eventual
synthesis of SPW-generated VHDL code is left to any external VHDL tools and the

designer’s VLSI experience and knowledge.

HDS Main Library
The HDS Main Library contains about 90 functional blocks. A complete list and
descriptions of the blocks is found in [35]. The following list of block categories

provides examples of block types:

e Bit manipulation - bit and word merge/split

e (locking

e Signal flow control - compare, counters, multiplexors

e Logic functions - Boolean operations, flip-flops, latches

e Mathematical functions - absolute value, add, subtract, increment/decrement,
multiply, divide

o Simulation I/O - format conversion, sinks, sources

e Vector processing - vector constant, extract/join operations, vector sink/source
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Not all of the blocks have the associated HDL code to perform HDL generation however.
Two useful blocks which do support hardware synthesis are the Mealy state machine and
combinational logic blocks [35]. The Mealy state machine block allows one to model
and synthesize a state machine by specifying the state equations to establish inputs,
outputs, states, and state transitions. The combinational logic block may be configured to

represent any set of Boolean logic equations.

HDS Micro Library

The HDS Micro Library contains hardware architecture blocks. These include
such items as arithmetic logic units (ALUs), encoders, decoders, registers, stacks, FIFO
queues, dual-port RAMs, and shifters. A complete list along with descriptions of these
blocks is provided in [35]. The presence of these blocks allows a designer to integrate the
digital control with the signal processing portion of a system so the entire system may be

simulated and eventually synthesized.

Floating to Fixed-Point Conversion Utility
This utility converts a design from a floating-point design to a fixed-point design

by replacing all instances of floating-point blocks with their fixed-point counterparts [35].

Fixed-Point Optimizer

The Fixed-Point Optimizer performs multiple simulations repeatedly using
different fixed-point attributes. From the simulation results, the Optimizer may
determine the sign format and the minimum number of integer bits needed to prevent any

overflow errors [35]. Fixed-point signal values are described by several attributes.
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e total number of bits
¢ number of bits to represent the integer part of the value (excluding the sign bit)
e sign representation (unsigned ‘v’ or two’s complement ‘t’)

For example, in SPW’s syntax, <8,2,t> indicates a total of eight bits with two integer bits,
and the ‘t” stands for two’s complement representation [35:2-1]. The Fixed-Point

Optimizer serves to determine the fixed-point attributes based on simulation results. The
Fixed-Point Optimizer is only beneficial if the designer has access to sample input signals

which are representative of all anticipated signals.

HDL Link
The HDL Link is the component of HDS which translates an architectural design

built with HDS blocks into an HDL description for synthesis.

HDL. Simulator Interface

The HDL Simulator Interface enables a designer to compile and run HDL

simulations from within SPW. The following HDL simulators are supported:

e Cadence: Verilog-XL
e (Cadence: Leapfrog

e Jkos: Voyager

e Synopsys: VSS

e Vantage: Spreadsheet

e Model Technology: V-System

Co-Simulation

Co-Simulation enable simulations in the SPW environment and supported VHDL

simulators to communicate during a single simulation run and therefore, provide a single




set of results. This may be useful if portions of the system are already described in
VHDL or if writing a component’s description in VHDL may be an easier task than
creating a block diagram representation in SPW. This co-simulation scenario has obvious
advantages in the flexibility it allows designers to combine different components into a
unified system. It does, however, require a computing environment with both SPW/HDS
and compatible VHDL tools. Wright Laboratory only maintains the basic SPW
configuration and does not have the HDS option. During the course of this research, the
Synopsys VLSI tools have been installed on the Zoo network where SPW currently
resides to facilitate co-simulation. The configuration steps required to link the tools is not
trivial and requires not only system administrator privileges but also in-depth knowledge
of the installations of both the Synopsys and SPW packages. Currently, VHDL code
generation is possible at AFIT, and while Synopsys Design Analyzer recognizes SPW
VHDL libraries, user designs are not recognized. Attempts to compile the VHDL code
also results in errors suggesting misplaced design files. This prohibits design synthesis

and VHDL simulation.

2D FFT VHDL Generation

There are several steps which must be taken to allow VHDL code generation.
Once VHDL code is generated, proper tool configuration is required to use that code.
The first step is to convert a floating-point block diagram design into a fixed-point block
diagram design. For this purpose, the aforementioned floating to fixed point conversion
utility may be used. This 1s only successful if the functional blocks used in the floating-

point design have equivalent fixed-point blocks. If this 1s not the case, portions of a
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design must be redesigned in terms of lower-level fixed-point blocks. In the case of the
2D FFT Butterfly diagram, fixed-point blocks are not available for the floating-point
addition block, and complex additions were constructed of simple addition blocks. A
design completely composed of fixed-point blocks may be used to generate VHDL code
through HDS. The generated code for the 2D FFT Butterfly is provided in Appendix E.
This VHDL code can only be useful if a suite of VHDL tools is available. At a minimum,
this consists of a VHDL compiler and a simulator. In order to compile the VHDL code,
all of the VHDL code representing each of the blocks in a design must be available to the
compiler. For this reason, it is useful to have both the SPW software and the VHDL tools

hosted on the same network.

Summary

This chapter has describes the implementation options available once a design’s
block diagram has been simulated. C code generation through SPW’s CGS enables
execution on workstations or development boards consisting of DSP processors. C
programs generated for workstation execution were found to be fast only when compared
to performing simulations within SPW. Evaluation of a parallel design using parallel
processing metrics is only available through a SPW-supported DSP development board or
by analysis of C program execution external to SPW. With an SPW-supported
development board, relative load balancing may be observed. Any other performance
metrics, such as run-time, for a development board or C program implementation must be
obtained externally to SPW. The lack of support to gather performance data prevents a

designer from making comparisons between theoretical parallel metric values and
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experimental results. SPW VHDL generation through the HDS component of SPW has
the potential to allow VLSI synthesis tools to create custom hardware. In order for this to
be feasible, the VHDL tools (compiler, simulator), SPW and the associated HDS VHDL
libraries, and the VLSI synthesis tools should be hosted on the same network along with

the links established to facilitate co-simulation.
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V. Conclusions and Recommendations

Based upon the literature review and experience gained through the use of SPW
and its various components, an evaluation of SPW to support rapid prototyping of parallel
DSP algorithms is presented. Through designing an algorithm, the 2D FFT,
representative of high-speed avionics applications and exploring the various
implementation options, an evaluation of SPW is possible. This chapter begins with an
overall evaluation of SPW. Since neither AFIT nor WL are currently configured to take
advantage of all of SPW’s functionality, recommendations on steps to rectify this

situation are also presented.

SPW Review

As described in the Literature Review (Chapter II), properly designed software
balances ease of learning, ease of use, and functionality. These factors were under
continuous evaluation during the design and implementation of the 2D FFT. A review is
provided in this chapter to summarize how SPW satisfies the criteria of good software

design.

Ease of Learning

The amount of time necessary for a user to gain proficiency with a software
package relies on many factors. The experience of the user is probably the greatest factor,
but assuming a general knowledge in the application of interest, the software and
accompanying documentation can ease the learning process. SPW, with the included

tutorials and well laid out manuals, provides an excellent learning environment.



Completing tutorials while learning the features of a software program is an
excellent hands-on approach as opposed to simply reading manuals. Each of the major
components of SPW includes tutorials which lead the user through sample designs. For
example, the tutorial for the CGS begins with a block diagram and step-by-step walks the
user through the process to generate, compile, and execute C code. These tutorials
frequently point out alternate methods of performing tasks as well. After completiag the
tutorials, the user is familiar with most of the functions needed to effectively use a

particular component of SPW.

If the tutorials do not provide enough information on a particular task, the user’s
guides and the on-line help are available to fill in the gaps. Fully indexed user’s guides
may be consulted to learn about the details of any function. At any time while working
within SPW, on-line help is available. The on-line help includes both a searchable
database and context-sensitive help. For example, upon activating the context-sensitive
help and selecting a particular functional block, SPW offers a window providing the basic
description of that block. This help option also provides information on any window that
is active. The combination of the tutorials, the user’s guides, and the on-line help ensure

a question may be answered by at least one source.

Ease of Use

SPW’s user interface contains a number of features contributing to its ease of use.
Among these features are toolbars which allow one click access to commonly used
functions. Keyboard shortcuts are also available which shortcut access to functions

within menus. User-defined macros are also available for sequences of commands which
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are repeated often. The greatest contributor to the ease of use is the consistent interface
and the ability to move seamlessly from one component of SPW to another. SPW
includes a number of individual applications, but the communication and transition

among them is transparent to the user.

File management, while adequate, can cause problems. Careful attention must be
paid to the file structure SPW uses to organize user libraries. In other words, the user
should never attempt to manipulate library files other than through SPW’s own file
manager utility. This includes copying directory structures for archiving. Such action
attempted outside of SPW will not cause loss of data, but SPW may no longer recognize
libraries. Another problem which may arise cause block symbols to lose their links to the
detail models. This is solved by re-linking the model to the detail model from the menu.
These two characteristics of SPW’s file management can cause headaches for the

uninitiated.

During simulation, two characteristics regarding error checking and reporting may
cause problems. Simulation error messages do not always inform the designer of
unconnected signals. Netlist checking and simulation may proceed without warning and
produce erroneous results. Connections should be visually inspected throughout the
design. Also, since individual functional blocks are not given specific identifiers, error
messages which do appear refer to blocks only by type and SPW-assigned reference
numbers. If a design requires many instantiations of the same type of block, debugging
becomes difficult since the error messages do not allow the designer to readily distinguish

among blocks of the same type. The impact of these error checking and reporting
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problems may be lessened by using a modular design, validating modules at each step of

the design.

Functionality

SPW for Block Diagram Design

The BDE component of SPW is essentially the hub of all design activity. For
block diagram design, it should be intuitive for any designer with computer-aided design
experience. If the many libraries don’t provide a needed function, the BDE allows
importing functions from other sources such as MATLAB, C source code, or VHDL
code. Symbol creation is also very useful allowing the customization of a block for

aesthetic and functional gain.

Design simulation is seamlessly integrated with the BDE and the Signal
Calculator. The limited library of ISL blocks also could be helpful for real time analysis

for a given design.

SPW for Code Generation

The CGS component may be executed from within the BDE. All functions
execute from within the CGS control window. Like the other tools, CGS functions
seamlessly executed from with the BDE. The efficiency of code generation is
questionable however. For example, the C code generated for the (4 x 4)-point 2D FFT
amounted to a staggering 102 pages. Examination of the code shows a portion of the
code is used to emulate the ISL tools. Portability of the C code is suspect since

executables require access to the original SPW directory structure for input and output
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signal files. To execute the C programs on remote workstations, network access to the
these files must be provided. The bloated code produced, along with restrictions placed
on portability, severely limit the C programs from doing more than simply speeding up

simulations.

If a DSP processor is the target platform, CGS only supports certain processors
and development boards. This limitation requires a thorough evaluation of the computing
requirements envisioned for the application, and subsequent acquisition of a supported
development board hosting DSP processor to meet those requirements. Refer to

Appendix D for a sample listing of DSP processor performance capabilities.

SPW for HDL. Generation

The HDS component of SPW provides a means to design logic for the purpose of
controlling signal processing systems. SPW was originally developed for signal
processing algorithms, and HDS and the HDS libraries are not as mature. A good, basic
set of blocks is provided, however many of the blocks only support fixed-point sirﬁulation
and do not include accompanying VHDL code for VHDL generation purposes. Since
HDS does support user-defined blocks from VHDL, the limitation of the library may be
overcome. The capability for co-simulation in cooperation with VHDL simulation tools
shows the most promise. The combination of SPW’s signal flow simulator and a quality

VHDL simulator allows greater flexibility in system design.

The designer must be cognizant of the fact that HDL Generation does not
determine the area a design requires when synthesized for silicon layout. For example, if

single set of VHDL code is generated for a given block diagram design, the resultant
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synthesized layout may not conform to a die size which is cost effective. The design
would have to be either partitioned at the block diagram level to generate subsections of
VHDL or partitioned at the VHDL code level. This would require VHDL knowledge to
create the interfaces required for these subsections of VHDL code. Only experience with
the HDL generation capabilities of SPW and the synthesis capabilities of the VHDL tools

will allow the designer to make the correct decisions.

Like the C code generated for a design, the generated VHDL code benefits from
good organization attributed to the use of underlying VHDL building blocks. VHDL
code generated for the basic (2x2)-point 2D FFT amounted to five pages of code
(Appendix E) with each entity clearly specified and user-defined signal names used for
VHDL signal names. Good coding practice calls for logically organized components, and
VHDL hand-coding requires close attention to organization details throughout the design
process. The HDS VHDL code generation not only provides rapid results, but it also
enforces a consistent, logical framework. In the absence of development time and/or

VHDL knowledge, HDS can provide well organized, rapid VHDL code results.

Summary

In summary, SPW and the complete set of optional components offers an
excellent environment to allow a designer to proceed from block diagram design of an
algorithm through hardware implementation. While the libraries may not include blocks
needed for a particular application, the flexibility to add custom-coded blocks does not
limit the designer to the included libraries. The interfaces between MATLAB and VHDL

tools provides even greater flexibility by allowing the use of pre-existing MATLAB
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functions or VHDL entities. Lastly, the excellent forms of documentation allow a
designer to quickly gain familiarity with the wide range of tools available. The following

table summarizes the criteria for well designed software [22].

Table 4- How SPW satisfies criteria of well designed software

CRITERIA YES/NO COMMENTS

Tutorials YES Clear, practical tutorials expose the new user to basic
functions

Help facilities YES On-line help and user’s guides provide quick guidance

Shortcuts to perform tasks YES Keyboard shortcuts, macros, and toolbars

quickly

Necessary functions provided YES Extensive libraries available with ability to incorporate
user-designed blocks and interface with MATLAB and
VLST tools

Good use of color YES Colors are used to distinguish functional blocks, signal
lines, and text

Good use of icons YES Toolbars use icons for instant recognition of commonly
used functions

Helpful error messages ° NO Error messages are somewhat cryptic in problem
specification

For evaluating designs in terms of parallel processing metrics, SPW offers limited
functionality to the user. During simulation, whether it be performed on a single
workstation or a network of workstations, no simulation time information is provided in
order to evaluate relative run-times. Generating C code programs does allow the designer
to use UNIX system utilities to gather run-time information to evaluate speedup however.
In either case, evaluating the effect of communication overhead is not directly possible
for determining efficiency. The only useful means of evaluating a parallel design is
through monitoring a DSP processor implementation on a supported development board.

In this setup, SPW can monitor processor workloads so that load balancing may be
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observed. While SPW has the potential to allow a designer to evaluate parallel DSP
designs in terms of parallel processing metrics, this is accomplished only through SPW-
supported DSP development boards. Refer to Table 1 in Chapter II for a list of other

software packages with similar capabilities to SPW.

Recommendations
The optional components of SPW, MultiProx/CGS and HDS, are not fully utilized

given the current configuration of the software on the AFIT Zoo network. A timely
concept to hardware process is always desired, but this is required for AFIT’s fixed-time
degree programs. A proper software and hardware configuration in an AFIT laboratory
has the potential to offer a student the opportunity realize an algorithm in testable
hardware during the time allowed for thesis research. There are three scenarios

envisioned each supporting different objectives.

1. Configuring SPW currently installed to support parallel DSP algorithm

implementation on a network of workstations.
2. Acquisition of a compatible development board for hardware testing.

3. Complete configuration of SPW and Synopsys VHDL tools on the AFIT Zoo to

support co-simulation and hardware synthesis.

SPW installed on the AFIT Zoo network of workstations currently includes all of
the necessary options, CGS and MultiProx, to support design, simulation, and standard C
code generation and execution. However, in order to simulate designs on multiple

workstations, MultiProx must be properly configured to identify and communicate with
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other workstations on the network. This is a minimal effort requiring the cooperation of
network system administration. As it stands now, designs may be partitioned, but
simulation among multiple workstations is not possible. Of the three scenarios, this does
not require additional software or hardware. While code generation and execution for
multiple workstations would be possible, the process would end there without an

accompanying development board or an integrated VLSI software environment.

The second scenario requires the acquisition of a development board (~$2K)
compatible with SPW, a PC to host that board, and an Ethernet connection between the
PC and a workstation hosting SPW. To allow code generation for multiple DSPs,
configuration changes similar to those already mentioned are required. A PC and
associated development board allows a designer to design and simulate a block diagram
on the SPW workstation and download CGS-generated code to the PC/development
board for compilation and execution. PC and development board control and monitoring
is possible through the SPW workstation. This interaction provides the best means of
monitoring program status and allows analysis of input and output signals using SPW’s

Signal Calculator.

The third scenario requires completing the configuration of the SPW software and
VHDL simulation and synthesis tools on the AFIT Zoo network. This allows for co-
simulation whereby different components of a system may be described in both SPW
block diagrams and VHDL code and simulated together. This setup also allows a
designer to generate VHDL code in SPW/HDS and immediately simulate and/or

synthesize hardware using the SPW-generated VHDL. While this scenario does not
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require the purchase of additional software, it requires an understanding of the versions
necessary and configuration required to support co-simulation and the link between tools
for hardware synthesis. During the course of this research, Synopsys has been installed
on the Zoo network, and steps have been taken to link the two software packages.
However, configuration problems still exist. Resolution of these problems would be
possible through an independent study with a student versed in the tools in question and

direct contact with the Alta Group for troubleshooting.

As for the Texas Instruments Quad C40 DSP320 Development Board owned by
WL, this board’s use requires additional development software. The software allows
compilation, assembly source code generation, and linking. There is also an archiving
utility and a hex translator for an EPROM programmer. However, there is no debugger,
emulator, or simulator. Also, there are no utilities to allow communication with the
development board. Moreover, this particular development board is not supported by
SPW for direct communication with CGS. Since this board’s DSP processors are no
longer the state-of-the-art and integration with SPW is limited, additional investment in
this board is not recommended. If the capability to simulate designs in hardware is
desired, purchase of a SPW compatible development board containing desirable
processors is required. If any of the SPW-supported development boards do not use DSP
processors which meet processing, cost, or power requirements, an unsupported board
could still be used in conjunction with SPW at the expense of not having control of the
board through SPW. The features and capabilities of DSP processors shown in Appendix

A would have to be taken into account when selecting a suitable target processor.
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Summary

This research shows the advantages that a software tool such as SPW can provide
the DSP designer. The integrated design, simulation, and implementation features of
SPW allows a designer to focus on higher-level design trade-offs rather than
implementation details. Designing the parallel 2D FFT shows how the logical, consistent
interface and functionality of SPW simplifies the design process. If commercially
purchased, the current AFIT educational installation of SPW would cost over $100K, but
the extended potential is not currently usable [36]. By investing only the time to make
the modifications to current software configurations at AFIT or WL or purchasing a
development board, the full potential of SPW to provide a complete rapid prototyping
environment may be realized. A designer has the flexibility to design an algorithm at the
block diagram level and implement the design in either a C code program for
workstations and DSP processors or a VHDL code implementation for later synthesis and
layout. The initial investment has already been made, and with additional time invested
to configure and learn the various SPW components, significant dividends in long-term
time savings may be achieved in the design and implementation of parallel DSP

algorithms.
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Appendix A - Guide to DSP Processors and Cores

The following page contains the Pocket Guide to DSP Processors and Cores. This
guide provides a summary of current DSP processors and their capabilities and costs

which represent general metrics to use when evaluating a DSP processor solution.
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Appendix B - Multidimensional FFT Vector

Notation

By representing a multidimensional discrete Fourier transform (DFT) using
matrices, the periodicities due to both the sampling lattice and the signal to be

transformed [3030:45]. The transform pair for the multidimensional DFT is expressed as

X(m)= Zx(n)e["j"'r(mkr)'”] 27)
ney y
and
1 7 -r
x(n) = —— X (m)elm G m 28
(n) J(N)mgﬂ( ) (28)
where

x(n) is a multidimensional sequence periodic with period N, the periodicity matrix
X(m) is a multidimensional sequence periodic with period N”

% » 1S one period of x(n)

J(N) =ldet N | or the density of the periodicity matrix [30:45-48]

These expressions offer the flexibility of mathematically representing multidimensional
DFTs using sampling lattice structures other than rectangular matrices such as hexagonal

or quincunx.
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Appendix C - Vector-Radix FFT

The fundamental concept behind the vector-radix FFT algorithm is the decimation
in time which occurs to express a (V; X N)-point DFT in terms of four Ny/2 x Nao/2 DFTs
[28:77]. This assumes both N, and N, are divisible by 2. The following equation

represents the direct calculation of the 2-D DFT as a double sum [28:75].

Ny -1N, -1

X(kk,)= Z‘) N x(ny,n, )Wyt Wy (29)
for
0<k <N,—land 0<k, <N, -1
and

2m
Wy = exp(—Jj 7\7)
Decomposing this summation into four separate summations yields [28:77]:

N/2-1N/2-1

SOO (kl , kz) - z Z x(2m1 ,2m2 )W;m|k1+2mzk2 (30)

m=0 m,=0

N/I2-1N/2-1

Stk ky) =D, Y x(2my,2m, + Wy 2 G1)

my=0 m;=0

N/2-1N/2-1

SIO(kl’k2)= z Z’x(zml +1,2m2)W13m'k‘+2'"2k2 (32)

my=0 my=0
N/2-1N/2-1

S“ (kl ,kz) = 2 Zx(2m1 + 1,2m2 + I)W;mlkﬁz»zzkz (33)

my=0 my=0
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where Sgp is for samples of x with even n; and n,, Sy is for n) even and n, odd, Sy is for

n; odd and n; even, and S1; is when both n; and n, are odd. Since each of these arrays is
periodic in (ki,k») with horizontal and vertical periods N/2 and W,"* = -1, the following

equations are derived [28:77]:

Xk ky) = Spo (K, k) + Wt S, Ky Koy ) + Wit S, (K, Ky ) + WS (KL k) (34)

N
X(k, + 3,kz) = Spo Uk Ky )+ W2 Sy, (K, Ky ) — Wit S, Uk Koy ) = WIS, (k&) (35)

N +
X(k,, k, + 3) = Sy (ky Ky ) = Wi Sy, (ky ey + WS, (K, ey ) — WS, (e, ky) (36)

N N .
X(k, +~i—,k2+—2—)=Soo(kl,kz)—W,\’,‘ZSOI(kl,kz)—W,\’,“Slo(kl,k2)+W,f,"‘ I8k, ky) (37)

These four equations are used to compute four DFT points for a particular value of (k,k;)
from the four points SOO(kl ,kz), SQ[(kl,kz), Slo(kl,kz), and Sll(kl,kz) [2877] These

equations may be illustrated as a radix-(2x2) butterfly shown in Figure 30.
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Y~

Soo(ky, ky) —O—

X(ky, k)

wyk2 N
So1(ky, k3) —G > X(ky + 2 kj)
Sio(ky, k3) —O- > X(ky, ky + -2.)
kal +k;
Sy (ky, ky) —O > X(k, +§, k, +%’)

Figure 30 - Isolated radix-(2x2) butterfly[28:78]

For larger systems of points, decimation can occur log,N times (if N is a power of 2), and
each stage has N*/4 butterflies with three complex multiplications and eight complex

additions in each butterfly [28:78].
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Appendix D- SPW/CGS Generated C Code

Structure

The C code generated by the CGS option of SPW is divided into seven different
sections as described in [33]. The contents of the different sections are described in this
appendix. While the generated C code is well structured, portability is limited due to

strong ties to the SPW environment itself.

1. Preamble: The first part of the program, the preamble contains the function name,

date of creation, and any needed include or define statements.

2. Variable Declaration: The parameter, output, and state variables for the system are

declared in this section as static globals.

3. System Initialization: In system initialization, vectors are initialized and disconnected

input/output buffers are zero-filled.
4. Parameter Initialization: Block parameters are initialized when variable are declared.

5. Local Variable Declaration: Variable which were declared locally for a block within

the block declarations are declared once per block as variablename_blockname.

6. Initialize and Terminate Actions: Each of the blocks in the design is listed and

identified by a comment in the form /* library__ function__ model__ instance __ */

7. Run Code: This is the main iteration loop of the system with either a predetermined

number of loops or an infinite loop which is executed until terminated.
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8. Iteration Count Variable: This variable, a long int, holds the current iteration count.
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Appendix E - SPW/HDS Generated VHDL Code for

the (2x2)-point 2D FFT

Shesfe sfe e sheofe she s sheske oo ok s sfehe sfeste sfeske s sfe sk e sk sfeshe st she s sfeste sfe s sl ek sfeshe sfeshe e sfe s st stk skl stestesk sk e sfeste sfe st sfeskeosfesteoesfe stk s e sfe skl e skesfesteske

This confidential and proprietary software may be used only
as authorized by a licensing agreement from the Alta Group of
Cadence Design Systems, Inc. In the event of publication, the
following notice is applicable:

(c) COPYRIGHT 1994 ALTA GROUP OF CADENCE DESIGN SYSTEMS, INC
ALL RIGHTS RESERVED

The entire notice above must be reproduced on all authorized
copies.
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sk
5k
£
£
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ES
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she e ofe sfe she sfe she sk sl sfe o she ook ok sl sk s sk s sk she ok ok sk sfe sk sk sl sle s she ofe sk sk ke s sk she st sk s sl sk sk sk e s sk sk ke sle sfe st she e sfe s sl s sk ke sfe sfe sfe sk sle st sfe sfeste sl skoskeok

library IEEE;

library alta_synopsys;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use alta_synopsys.hds_fxp_alta.all;
use alta_synopsys.hds_proc_alta.all;
use alta_synopsys.hds_comp_alta.all;

entity hds_fft is
port(  r_inl0: in std_logic_vector(8-1 downto 0);

r_in00 : in std_logic_vector(8-1 downto 0);
i_in10 : in std_logic_vector(8-1 downto 0);
i_in0O : in std_logic_vector(8-1 downto 0);
r_in11 : in std_logic_vector(8-1 downto 0);
r_in01 : in std_logic_vector(8-1 downto 0);
i_inl1 : in std_logic_vector(8-1 downto 0);
i_inO1 : in std_logic_vector(8-1 downto 0);
r_out00 : out std_logic_vector(8-1 downto 0);
r_outl0 : out std_logic_vector(8-1 downto 0);
r_out01 : out std_logic_vector(8-1 downto 0);
r_outll : out std_logic_vector(8-1 downto 0);
i_out00 : out std_logic_vector(8-1 downto 0);
i_outlO : out std_logic_vector(8-1 downto 0);
i_out01 : out std_logic_vector(8-1 downto 0);
i_outll : out std_logic_vector(8-1 downto 0));

end hds_fft ;

architecture hds_body of hds_fft is
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constant offset : integer := 0-2*fxpMinValue(0, -7 );

signal sig_net_r_out00_0 : std_logic_vector(0-1+1-+offset downto 0-8+1+offset) ;
signal sig_niet_r_out10_1 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_r_out01_2 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_r_outl1_3 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_i_out00_4 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_i_outl0_35 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_i_out01_6 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_r_in10_7 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_r_in00_8 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_i_in10_9 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_i_in00_10 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_r_in11_11 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_r_in01_12 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_i_in11_13 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_i_in01_14 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_net_15 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;

signal sig_net_16 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;

signal sig_net_17 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;

signal sig_net_18 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;

signal sig_net_19 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;

signal sig_net_20 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;

signal sig_net_21 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;

signal sig_net_22 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;

signal sig_net_i_out11_23 : std_logic_vector(0-1+1+offset downto 0-8+1+offset) ;
signal sig_sys_clk : std_logic :='0";

begin -- architecture hds_body

sig_net r_inl0_7 <=r_inl0;
sig_net_r_in00_8 <=r_in00 ;
sig_net_i_in10_9 <=1_inl0;
sig_net_i_in00_10 <=1_in00 ;
sig_net_r_inll_11 <=r_inl1;
sig_net_r_in01_12 <=r_in01 ;
sig_net_i_inl1_13 <=1i_inll;
sig_net_i_in01_14 <=1_in01 ;

hds_fft_async_process : process
( sig_net_r_inl10_7 , sig_net_r_in00_8 , sig_net_i_in10_9 , sig_net_i_in00_10,
sig_net_r_inl1_11,sig net_r_in01_12,sig_net_i_inl1_13, sig_net_i_in01_14 )

variable var_net_r_out00_0 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_r_out10_1 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_r_out01_2 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_r_out11_3 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_i_out00_4 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_i_out10_5 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_i_out01_6 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_r_in10_7 : signed(0-1+1+offset downto 0-8+1+offset) ;

variable var_net_r_in00_8 : signed(0-1+1+offset downto 0-8+1+offset) ;

variable var_net_i_in10_9 : signed(0-1+1+offset downto 0-8+1+offset) ;

variable var_net_i_in00_10 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_r_in11_11 : signed(0-1+1+offset downto 0-8+1+offset) ;
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variable var_net_r_in01_12 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_i_in11_13 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_i_in01_14 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_15 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_16 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_17 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_18 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_19 : signed(0- 1+1+offset downto 0-8+1+offset) ;
variable var_net_20 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_21 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_22 : signed(0-1+1+offset downto 0-8+1+offset) ;
variable var_net_i_outl1_23 : signed(0-1+1+offset downto 0-8+1+offset) ;

begin -- process hds_fft_async_process

var_net_r_outl0_1 :=signed(sig_net_r_outl0_1);
var_net_r_out01_2 := signed(sig_net_r_out01_2);
var_net_r_outl1_3 := signed(sig_net_r_outl1_3);
var_net_i_out00_4 := signed(sig_net_i_out00_4) ;
var_net_i_outl0_5 := signed(sig_net_i_out10_5) ;
var_net_i_outO1_6 := signed(sig_net_i_out01_6) ;
var_net_r_in10_7 := signed(sig_net_r_in10_7) ;

var_net_r_out00_0 := signed(sig_net_r_out00_0) ;

var_net_r_in00_8 := signed(sig_net_r_in00_8) ;
var_net_i_in10_9 := signed(sig_net_i_in10_9) ;
var_net_i_in00_10 := signed(sig_net_i_in00_10} ;
var_net_r_inl11_11 := signed(sig_net_r_inl1_11);
var_net_r_in01_12 .= signed(sig_net_r_in01_12) ;
var_net_i_in11_13 := signed(sig_net_i_in11_13);
var_net_i_in01_14 := signed(sig_net_i_in01_14);
var_net_15 ;= signed(sig_net_15) ;

var_net_16 := signed(sig_net_16) ;

var_net_17 := signed(sig_net_17) ;

var_net_18 := signed(sig_net_18) ;

var_net_19 := signed(sig_net_19) ;

var_net_20 := signed(sig_net_20) ;

var_net_21 ;= signed(sig_net_21) ;

var_net_22 := signed(sig_net_22) ;
var_net_i_outl1_23 :=signed(sig_net_i_outl1_23);

hds_main_sum2 ( overflow_mode => clip , loss_mode => truncate , inl =>
var_net_r_inl1_11,

in2 => var_net_r_in01_12 , outp => var_net_15 );

-- Local Block Id: 5, Flattened Block Id: 624

hds_main_sum?2 ( overflow_mode => clip , loss_mode => truncate , in1 =>
var_net_r_in10_7,

in2 => var_net_r_in00_8 , outp => var_net_16 );

-- Local Block 1d: 1, Flattened Block Id: 560

hds_main_sum?2 ( overflow_mode => clip , loss_mode => truncate , inl => var_net_15,

in2 => var_net_16, outp => var_net_r_out00_0 );
-- Local Block Id: 16, Flattened Block Id: 432
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hds_main_sum2 ( overflow_mode => clip , loss_mode => truncate , inl =>
var_net_r_in01_12,

in2 => var_net_r_inl1_11, outp => var_net_17 );

-- Local Block Id: 8, Flattened Block Id: 608

hds_main_sum2 ( overflow_mode => clip , loss_mode => truncate , in1 =>
var_net_r_in00_8 ,

in2 => var_net_r_in10_7 , outp => var_net_18 );

-- Local Block Id: 3, Flattened Block Id: 544

hds_main_sum? ( overflow_mode => clip , loss_mode => truncate , inl => var_net_17,
in2 => var_net_18 , outp => var_net_r_outl0_1 );
-- Local Block Id: 14, Flattened Block Id: 448

hds_main_sum?2 ( overflow_mode => clip , loss_mode => truncate , in1 => var_net_16,
in2 => var_net_15, outp => var_net_r_out01_2 );
-- Local Block Id: 12, Flattened Block Id: 464

hds_main_sum?2 ( overflow_mode => clip , loss_mode => truncate , inl => var_net_18,
in2 => var_net_17 , outp => var_net_r_outl1_3 );
-- Local Block Id: 9, Flattened Block Id: 480

hds_main_sum? ( overflow_mode => clip , loss_mode => truncate , inl =>
var_net_i inl1_13,

in2 => var_pet_i_in01_14 , outp => var_net_19 );

-- Local Block Id: 6, Flattened Block Id: 656

hds_main_sum? ( overflow_mode => clip , loss_mode => truncate , inl =>
var_net i inl10_9,

in2 => var_net_i_in00_10, outp => var_net_20 );

-- Local Block Id: 2, Flattened Block Id: 592

hds_main_sum?2 ( overflow_mode => clip , loss_mode => truncate , inl => var_net_19,
in2 => var_net_20 , outp => var_net_i_out00_4 );
-- Local Block Id: 15, Flattened Block Id: 496

hds_main_sum?2 ( overflow_mode => clip , loss_mode => truncate , in1 =>
var_net_i_in01_14,

in2 => var_net_i_in11_13 , outp => var_net_21 );

-- Local Block Id: 7, Flattened Block Id: 640

hds_main_sum?2 ( overflow_mode => clip , loss_mode => truncate , in1 =>
var_net_i_in00_10,

in2 => var_net_i_in10_9, outp => var_net_22 );

-- Local Block Id: 4, Flattened Block Id: 576

hds_main_sum? ( overflow_mode => clip , loss_mode => truncate , inl => var_net_21,
in2 => var_net_22 , outp => var_net_i_out10_5 );

-- Local Block Id: 13, Flattened Block Id: 512

hds_main_sum2 ( overflow_mode => clip , loss_mode => truncate , inl => var_net_20,
in2 => var_net_19, outp => var_net_i_out01_6 );

-- Local Block Id: 11, Flattened Block Id: 528

hds_main_sum? ( overflow_mode => clip , loss_mode => truncate , inl => var_net_22,
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in2 => var_net_21 , outp => var_net_i_outl1_23 );
-- Local Block Id: 10, Flattened Block Id: 672

sig_net_r_out00_0 <= std_logic_vector(var_net_r_out00_0) ;
sig_net_r_outl0_1 <=std_logic_vector(var_net_r_outl0_1);
sig_net_r_out01_2 <= std_logic_vector(var_net_r_out01_2) ;
sig_net_r_outll_3 <=std_logic_vector(var_net_r_outl1_3);
sig_net_i_out00_4 <= std_logic_vector(var_net_i_out00_4) ;
sig_net_i_out10_5 <= std_logic_vector(var_net_i_out10_5) ;
sig_net_i_out01_6 <= std_logic_vector(var_net_i_out01_6) ;
sig_net_15 <= std_logic_vector(var_net_15) ;

sig_net_16 <= std_logic_vector(var_net_16) ;

sig_net_17 <= std_logic_vector(var_net_17) ;

sig_net_18 <= std_logic_vector(var_net_18) ;

sig_net_19 <= std_logic_vector(var_net_19) ;

sig_net_20 <= std_logic_vector(var_net_20) ;

sig_net_21 <= std_logic_vector(var_net_21) ;

sig_net_22 <= std_logic_vector(var_net_22) ;
sig_net_i_outl1_23 <= std_logic_vector(var_net_i_outl1_23);

end process hds_fft_async_process ;

r_out00 <= sig_net_r_out00_0 ;
r_outl0 <= sig_net_r_outl0_1 ;
r_outO1 <= sig_net_r_out01_2;
r_outll <= sig_net_r_outll_3;
i_out00 <= sig_net_i_out00_4 ;
i_outlQ <= sig_net_i_out10_5;
i_outQ1 <=sig_net_i out01_6;
i_outll <=sig_net_i_outll 23;

end hds_body ;

-~ Configuration declaration

-~ synopsys synthesis_off

configuration hds_fft_hds_body_cfg of hds_fft is
for hds_body
end for;

end hds_fft_hds_body_cfg;

-- synopsys synthesis_on
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